1 int

1.1 Explained

Here, we just encode values as ints regardless of their units.

1.2 Example

signature UNITS = sig
type miles = int
type km = int
end

(*x "Good" code %)
val d1 : miles = 12
val d2 : km = 15

(* Intern code *)
val d3 = d1 + d2
Pros:
e Fasy to use?
Cons:
e Compiler won’t check anything
— If you forget an annotation, you have no idea what the units are
— If you make a mistake, it may go unnoticed

Of course this would never happen in a real codebase...except that time it
did and it cost NASA $327 million.

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

2 ADTs

2.1 Explanation

Here, we use an ADT to represent distance, representing different units as
different variants of the datatype. This is a pretty standard technique in
SML and similar languages.

2.2 Example
signature UNITS = sig
datatype distance = Miles of int | Km of int

val miles_to_km : distance -> distance
val km_to_miles : distance -> distance

(* Arguments must be in same units *)
val op+ : distance * distance -> distance
end

(* Good code *)
val d1 = Miles 12
val d2 = Km 15

(* Intern code - still compiles but will fail at runtime *)
val d3 = km_to_miles dil
val d4 = d2 + d3

Pros:
e Units are checked
Cons:

e Units are checked at runtime - no way to statically check or constrain
units.

e Must pay runtime cost for checks even if you never make any mistakes

3 Phantom Types

3.1 Explained

A phantom type refers to a type parameter which is not used by values of
that type. For example, consider the following:

type ’a t = int

Even though t has a type parameter, values of type ’a t have nothing to do
with ’a - they’re just ints. Therefore, we refer to t as a phantom type.

Phantom types are useful for making the typechecker perform compile-time
enforcement of various things without doing anything at runtime.

In the following example, we use phantom types to encode the units of
distance values in their types.

3.2 Example

signature UNITS = sig
type miles
type km

type ’u distance

val miles : int -> miles distance
val km : int -> km distance

val miles_to_km : miles distance -> km distance
val km_to_miles : km distance -> miles distance

val op+ : ’u distance * ’u distance -> ’u distance
end

(* Good code *)
val d1 = miles 12
val d2 = km 15

(* Formerly intern code - now a type error *)

dl + 42
km_to_miles dil

val

val

(* SML doesn’t let us case on what type ’u is *)
fun to_km (d : ’u distance) : km distance = 777

Pros:

e Unit safety is statically enforced
Cons:

e Can’t case on units

e Can’t write generic conversion functions - we would need to write a
function for every possible pair of units

e Can write nonsensical types like string distance

4 GADTS

Note: Unlike all the previous examples, GADTs are not valid SML. There
are other, similar-ish, languages with GADTs such as OCaml and Haskell in
which a similar example would work just fine.

4.1 Explained

Generalized algebraic data types, or GADTs, add additional functionality to
the ADTs we know and love. Consider the following code:

datatype ’a option =
NONE
| SOME of ’a

If we write out the types of the constructors, we can see that

NONE : ’a option
SOME : ’a -> ’a option

Knowing this, we could change the syntax of datatype declarations to define
the types of constructors instead of the arguments they take in. Such a
declaration would look like the following:

datatype ’a option =
NONE : ’a option
| SOME : ’a -> ’a option

Notice how every constructor returns an ’a option. This is required for
regular ADTs. What GADTs do (and what makes them ”generalized”) is
that they let you write constructors returning a type more specific than ’a
option. For example, we could write the following:

datatype ’a option =
NONE : ’a option
| FOO : unit option

| SOME : ’a -> ’a option

This has several consequences when casing on a value of type ’a option.
For example, consider the following;:

fun no_unit_club (x: bool option) : unit =

case x of
NONE => ()
| SOME _ => ()

Note that this code doesn’t consider the FOO case, and yet the compiler won’t
complain - not even a nonexhaustive match warning. That’s because the
compiler knows that a bool option can’t have the form F0O, since F0OO is a
unit option.

Another surprising consequence is that values can have different types in
different case arms. Consider the following:

datatype ’a tagged =
Bool : bool tagged
| Int : int tagged

fun extract (x : ’a tagged) : ’a =
case x of
Bool b => b (x x : bool tagged *)
| Int 1 => i (* x : int tagged *)

Note that depending on which case arm you look at, x has a different type!
This is very different from what we're used to. Additionally, consider the
following;:

val _ = extract (Bool true)

In this example, the argument to extract has type bool tagged. Because of
this, the compiler could, without any complex analysis, statically determine
that only the Bool case can be taken and elide the branch!.

In the following example, we modify the ADT code to use GADTs. In
a way, this is a combination of the ADT and phantom type approaches -
we use a datatype declaration but tag distances with a type representing

'Such an optimization certainly could be done without the type information, but op-
timizers can be unpredictable and the type information makes the optimization much
simpler.

their units. Unlike either previous approach, however, the constructors are
associated with their units at the type level.

4.2 Example

signature UNITS = sig
type miles
type km

datatype ’u distance =
Miles : int -> miles distance
| Km : int -> km distance

val miles_to_km : miles distance -> km distance
val km_to_miles : km distance -> miles distance

val op+ : ’u distance * ’u distance -> ’u distance
end

(* Good code *)
val d1 = miles 12
val d2 = km 15

(* Formerly intern code - now a type error *)

val _ = dl + d2
val _ = km_to_miles dil
fun to_km (d : ’u distance) : km distance =
case d of
Miles _ => miles_to_km d (* d: miles distance *)
| Km _ =>4 (* d: km distance *)

(*x New intern code x*)

fun to_miles (d : ’u distance) : unit =
case d of
Miles _ => d

| Km _ => (print "I hate metric"; Miles 0)

Pros:
e Unit safety is statically enforced
e We can case on units
Cons:
e Type inference becomes more complicated

e Breaks the intuitive notion of parametricity - polymorphic functions
may behave differently when applied to different types

	int
	Explained
	Example

	ADTs
	Explanation
	Example

	Phantom Types
	Explained
	Example

	GADTS
	Explained
	Example

