
Substructural Type
Systems

Password: f (a + b) = f (a) + f (b)
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Arrays vs Lists



Arrays

val A1 = [|"9", "8", "3", "1", "7"|]
val () = Array.update A1 (4, "2")
val "2" = Array.nth A1 4
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Arrays

Pros:

• O(1) access
• O(1) update

Cons:

• Reliant on mutation
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Lists

val L1 = ["9", "8", "3", "1", "7"]
val L2 = List.update L1 (4, "2")
val "2" = List.nth L2 4
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We want a purely functional data structure
with O(1) access and update.
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(Array)Sequences?

val S1 = <"9", "8", "3", "1", "7">
val S2 = Seq.update S1 (4, "2")
val "2" = Seq.nth S2 4
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Why is update O(n)?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")
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Why does update perform a copy?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
val "7" = Seq.nth S1 4
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val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
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We need mutability for O(1) update. . .

but we want purely functional code.
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We need mutability for O(1) update. . .

but we want purely functional code.

11



Where does mutability go wrong?

val S1 = <"9", "8", "3", "1", "7">

val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
val "7" = Seq.nth S1 4
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“Obvious” rules

1. Variables can be used multiple times
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“Obvious” rules

1. Variables can be used multiple times
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Affine Type System



Affine Type System

Variables can be used at most once.
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Affine types

val S1 = <"9", "8", "3", "1", "7">

val S2 = Seq.update S1 (4, "2")

(* Compiler error *)
val "7" = Seq.nth S1 4
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Using types to improve performance
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Questions?
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Theory break

Γ, x : τ ` x : τ

Recall: Γ is a context mapping variables to
their types.

We will treat Γ as a (possibly empty)
unordered list of the form x1 : τ1, . . . , xn : τn.
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Theory break

Think of elements of Γ as being “used up”
whenever they are referenced.
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“Obvious” rules

“Variables can be used multiple times”

Γ, x : τ, x : τ ` x : τ
Γ, x : τ ` x : τ Contraction
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Questions?
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The success story
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The success story
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Similar code in Rust
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Error message
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Why does Rust have affine types?

Consider this program without affine types:

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Not necessarily - f’s caller may continue to
reference x.
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Why does Rust have affine types?

What about with affine types?

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Yes! f’s caller can no longer refer to x
after passing it to f.
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Rust has no global garbage collector at
runtime - it needs to statically know when to
dispose of values.
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Using types to improve performance
predictability
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Concurrency

val t = create_thread ()
val x = ref 0

(* Send x to another thread *)
val () = send t x

(* Possible race *)
val () = x := 1
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Concurrency with affine types

val t = create_thread ()
val x = ref 0

val () = send t x

val x = recv t
val () = x := 1
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Using types to improve correctness
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Questions?

34



Resources



Files

val openFile: path -> file
val closeFile: file -> unit
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What could go wrong?

val f = openFile "free_uc_stones.gif"
val () = closeFile f
val () = closeFile f

Affine types save us here.
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What else could go wrong?

val f = openFile "free_uc_stones.gif"

Affine types won’t help us here.
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“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all
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Linear Type System



Linear Type System

Variables must be used exactly once.
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malloc/free

int *x = malloc(sizeof(int));

// Don't forget to free
free(x);

// Don't double free
// free(x);
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“Obvious” rules

“Variables can be used not at all”

Γ ` e : τ
Γ, x : σ ` e : τ Weakening
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Using variables out of order

val x = 1
val y = 2

val _ = f y
val _ = f x
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“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

3. Variables can be used in any order
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Ordered type system



Ordered type system

Variables must be used exactly once, in the
order they were introduced.
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Theory break

We will treat Γ as a (possibly empty) ordered
list of the form x1 : τ1, . . . , xn : τn.
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“Obvious” rules

Γ, x : τ, x : τ,∆ ` x : τ
Γ, x : τ,∆ ` x : τ Contraction

Γ,∆ ` e : τ
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“Obvious” rules

“Variables can be used in any order”

Γ, x : σ, y : σ′,∆ ` e : τ
Γ, y : σ′, x : σ,∆ ` e : τ Exchange
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Substructural Type System



Structural rules

Γ, x : τ, x : τ,∆ ` x : τ
Γ, x : τ,∆ ` x : τ Contraction

Γ,∆ ` e : τ
Γ, x : σ,∆ ` e : τ Weakening

Γ, x : σ, y : σ′,∆ ` e : τ
Γ, y : σ′, x : σ,∆ ` e : τ Exchange
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A substructural type system is one which
omits one or more of contraction, weakening,
and exchange.
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Exchange Weakening Contraction

Normal Y Y Y
Relevant Y - Y
Affine Y Y -
Linear Y - -
Ordered - - -
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Questions?
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