
Substructural Type
Systems

Password: f (a + b) = f (a) + f (b)

1

Arrays vs Lists

Arrays

val A1 = [|"9", "8", "3", "1", "7"|]
val () = Array.update A1 (4, "2")
val "2" = Array.nth A1 4

2

Arrays

val A1 = [|"9", "8", "3", "1", "7"|]
val () = Array.update A1 (4, "2")
val "2" = Array.nth A1 4

2

Arrays

Pros:

• O(1) access
• O(1) update

Cons:

• Reliant on mutation

3

Arrays

Pros:

• O(1) access
• O(1) update

Cons:

• Reliant on mutation

3

Arrays

Pros:

• O(1) access
• O(1) update

Cons:

• Reliant on mutation

3

Lists

val L1 = ["9", "8", "3", "1", "7"]
val L2 = List.update L1 (4, "2")
val "2" = List.nth L2 4

4

Lists

val L1 = ["9", "8", "3", "1", "7"]
val L2 = List.update L1 (4, "2")
val "2" = List.nth L2 4

4

Lists

Pros:

• Purely functional

Cons:

• O(n) access
• O(n) update

5

Lists

Pros:

• Purely functional

Cons:

• O(n) access
• O(n) update

5

Lists

Pros:

• Purely functional

Cons:

• O(n) access
• O(n) update

5

We want a purely functional data structure
with O(1) access and update.

6

(Array)Sequences?

val S1 = <"9", "8", "3", "1", "7">
val S2 = Seq.update S1 (4, "2")
val "2" = Seq.nth S2 4

7

(Array)Sequences?

val S1 = <"9", "8", "3", "1", "7">
val S2 = Seq.update S1 (4, "2")
val "2" = Seq.nth S2 4

7

(Array)Sequences?

• Purely functional (interface)
• O(1) access
• O(n) update. . .

8

(Array)Sequences?

• Purely functional (interface)

• O(1) access
• O(n) update. . .

8

(Array)Sequences?

• Purely functional (interface)
• O(1) access

• O(n) update. . .

8

(Array)Sequences?

• Purely functional (interface)
• O(1) access
• O(n) update. . .

8

Why is update O(n)?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

9

Why is update O(n)?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

9

Why does update perform a copy?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
val "7" = Seq.nth S1 4

10

Why does update perform a copy?

val S1 = <"9", "8", "3", "1", "7">

(* Makes a copy of S1 *)
val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
val "7" = Seq.nth S1 4

10

We need mutability for O(1) update. . .

but we want purely functional code.

11

We need mutability for O(1) update. . .

but we want purely functional code.

11

Where does mutability go wrong?

val S1 = <"9", "8", "3", "1", "7">

val S2 = Seq.update S1 (4, "2")

(* Expects to see S1 unmodified *)
val "7" = Seq.nth S1 4

12

“Obvious” rules

1. Variables can be used multiple times

13

“Obvious” rules

1. Variables can be used multiple times

13

“Obvious” rules

1. Variables can be used multiple times

14

Affine Type System

Affine Type System

Variables can be used at most once.

15

Affine types

val S1 = <"9", "8", "3", "1", "7">

val S2 = Seq.update S1 (4, "2")

(* Compiler error *)
val "7" = Seq.nth S1 4

16

Using types to improve performance

17

Questions?

18

Theory break

Γ, x : τ ` x : τ

Recall: Γ is a context mapping variables to
their types.

We will treat Γ as a (possibly empty)
unordered list of the form x1 : τ1, . . . , xn : τn.

19

Theory break

Γ, x : τ ` x : τ

Recall: Γ is a context mapping variables to
their types.

We will treat Γ as a (possibly empty)
unordered list of the form x1 : τ1, . . . , xn : τn.

19

Theory break

Γ, x : τ ` x : τ

Recall: Γ is a context mapping variables to
their types.

We will treat Γ as a (possibly empty)
unordered list of the form x1 : τ1, . . . , xn : τn.

19

Theory break

Think of elements of Γ as being “used up”
whenever they are referenced.

20

“Obvious” rules

“Variables can be used multiple times”

Γ, x : τ, x : τ ` x : τ
Γ, x : τ ` x : τ Contraction

21

“Obvious” rules

“Variables can be used multiple times”

Γ, x : τ, x : τ ` x : τ
Γ, x : τ ` x : τ Contraction

21

“Obvious” rules

“Variables can be used multiple times”

Γ, x : τ, x : τ ` x : τ
Γ, x : τ ` x : τ Contraction

21

Questions?

22

The success story

23

The success story

23

Similar code in Rust

24

Error message

25

Why does Rust have affine types?

Consider this program without affine types:

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Not necessarily - f’s caller may continue to
reference x.

26

Why does Rust have affine types?

Consider this program without affine types:

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Not necessarily - f’s caller may continue to
reference x.

26

Why does Rust have affine types?

Consider this program without affine types:

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Not necessarily - f’s caller may continue to
reference x.

26

Why does Rust have affine types?

Consider this program without affine types:

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Not necessarily - f’s caller may continue to
reference x.

26

Why does Rust have affine types?

What about with affine types?

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Yes! f’s caller can no longer refer to x
after passing it to f.

27

Why does Rust have affine types?

What about with affine types?

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Yes! f’s caller can no longer refer to x
after passing it to f.

27

Why does Rust have affine types?

What about with affine types?

fun f x = []

Q: Can x be garbage collected at the end of
f?

A: Yes! f’s caller can no longer refer to x
after passing it to f.

27

Rust has no global garbage collector at
runtime - it needs to statically know when to
dispose of values.

28

Using types to improve performance
predictability

29

Concurrency

val t = create_thread ()
val x = ref 0

(* Send x to another thread *)
val () = send t x

(* Possible race *)
val () = x := 1

30

Concurrency

val t = create_thread ()
val x = ref 0

(* Send x to another thread *)
val () = send t x

(* Possible race *)
val () = x := 1 30

Concurrency with affine types

val t = create_thread ()
val x = ref 0

(* Send x to another thread *)
val () = send t x

(* Compiler error *)
val () = x := 1

31

Concurrency with affine types

val t = create_thread ()
val x = ref 0

(* Send x to another thread *)
val () = send t x

(* Compiler error *)
val () = x := 1 31

Concurrency with affine types

val t = create_thread ()
val x = ref 0

val () = send t x

val x = recv t
val () = x := 1

32

Using types to improve correctness

33

Questions?

34

Resources

Files

val openFile: path -> file
val closeFile: file -> unit

35

Files

val openFile: path -> file
val closeFile: file -> unit

35

What could go wrong?

val f = openFile "free_uc_stones.gif"
val () = closeFile f
val () = closeFile f

Affine types save us here.

36

What could go wrong?

val f = openFile "free_uc_stones.gif"
val () = closeFile f
val () = closeFile f

Affine types save us here.

36

What could go wrong?

val f = openFile "free_uc_stones.gif"
val () = closeFile f
val () = closeFile f

Affine types save us here.

36

What else could go wrong?

val f = openFile "free_uc_stones.gif"

Affine types won’t help us here.

37

What else could go wrong?

val f = openFile "free_uc_stones.gif"

Affine types won’t help us here.

37

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

38

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

38

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

39

Linear Type System

Linear Type System

Variables must be used exactly once.

40

malloc/free

int *x = malloc(sizeof(int));

// Don't forget to free
free(x);

// Don't double free
// free(x);

41

malloc/free

int *x = malloc(sizeof(int));

// Don't forget to free
free(x);

// Don't double free
// free(x);

41

“Obvious” rules

“Variables can be used not at all”

Γ ` e : τ
Γ, x : σ ` e : τ Weakening

42

“Obvious” rules

“Variables can be used not at all”

Γ ` e : τ
Γ, x : σ ` e : τ Weakening

42

“Obvious” rules

“Variables can be used not at all”

Γ ` e : τ
Γ, x : σ ` e : τ Weakening

42

Questions?

43

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

3. Variables can be used in any order

44

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

3. Variables can be used in any order

44

Using variables out of order

val x = 1
val y = 2

val _ = f y
val _ = f x

45

“Obvious” rules

1. Variables can be used multiple times

2. Variables can be used not at all

3. Variables can be used in any order

46

Ordered type system

Ordered type system

Variables must be used exactly once, in the
order they were introduced.

47

Theory break

We will treat Γ as a (possibly empty) ordered
list of the form x1 : τ1, . . . , xn : τn.

48

Theory break

We will treat Γ as a (possibly empty) ordered
list of the form x1 : τ1, . . . , xn : τn.

48

“Obvious” rules

Γ, x : τ, x : τ,∆ ` x : τ
Γ, x : τ,∆ ` x : τ Contraction

Γ,∆ ` e : τ
Γ, x : σ,∆ ` e : τ Weakening

49

“Obvious” rules

“Variables can be used in any order”

Γ, x : σ, y : σ′,∆ ` e : τ
Γ, y : σ′, x : σ,∆ ` e : τ Exchange

50

“Obvious” rules

“Variables can be used in any order”

Γ, x : σ, y : σ′,∆ ` e : τ
Γ, y : σ′, x : σ,∆ ` e : τ Exchange

50

Substructural Type System

Structural rules

Γ, x : τ, x : τ,∆ ` x : τ
Γ, x : τ,∆ ` x : τ Contraction

Γ,∆ ` e : τ
Γ, x : σ,∆ ` e : τ Weakening

Γ, x : σ, y : σ′,∆ ` e : τ
Γ, y : σ′, x : σ,∆ ` e : τ Exchange

51

A substructural type system is one which
omits one or more of contraction, weakening,
and exchange.

52

Exchange Weakening Contraction

Normal Y Y Y
Relevant Y - Y
Affine Y Y -
Linear Y - -
Ordered - - -

53

Questions?

54

	Arrays vs Lists
	Affine Type System
	Resources
	Linear Type System
	Ordered type system
	Substructural Type System

