
Hype For Types Homework 6: Monadic Parser Combinators

Email solutions to mmcquaid@andrew.cmu.edu

type 'a parser = char list -> ('a * char list) option
infix >>= ++ %
fun return x = fn i => SOME (x,i)
fun p >>= f = fn i =>

case p i of
SOME (x,r) => f x r

| n => n
fun p ++ q = fn i =>

case p i of
NONE => q i

| r => r
fun p % s = p (String.explode s)

As is usual with Hype For Types homework, please don’t spend more than an hour on this
if you don’t want to. Incorrect or incomplete answers will be accepted if a reasonable attempt is
present. Recommended handin format is an SML file with the answer to the first question in a
commment, but you can write the whole thing in Latex if you wish. A couple basic parser functions
are listed above for your convenience. For more, see the notes (listed on the website).

1. Briefly describe the function and purpose of return, >>= and ++ for the type ’a parser.

2. Using any of the combinators in the notes, write the following combinator:

pair : ’a parser * ’b parser -> (’a * ’b) parser

which takes two parsers p,q as input, and produces a parser which first runs p, then q, and
then returns their results as tuple.

For example:

pair (char #"a",char #"b") % "abc" =⇒ SOME ((#"a",#"b"),[#"c"])

3. Using any of the combinators in the notes, write the following combinator:

map : (’a -> ’b) -> ’a parser -> ’b parser

which maps a function over the result of a parser.

For example:

map (Int.toString o (fn x => x+1)) int % "149" =⇒ SOME ("150",[])

4. Using only pair and map, implement the following combinator:

liftA2 : (’a * ’b -> ’c) -> (’a parser * ’b parser) -> ’c parser

which lifts a binary function into the domain of parsers.

For example:

liftA2 op@ (many (string "a"), many (string "x")) % "aaxxx" =⇒ SOME (["a","a","x","x","x"],[])

1



5. Using any of the combinators in the notes, write the following combinator:

prefix : (’a -> ’a) parser -> ’a parser -> ’a parser

which takes an operator parser and an operand parser, and produces a parser which parses
zero or more instances of a prefixed operator, followed by one instance of an operand, and
returns the result of applying all instances of the operator to the operand.

For example:

prefix (string "s" >> return (fn x => x+1)) (string "z" >> return 0) % "sssz" =⇒
SOME (3,[])

6. We extend our untyped λ-calculus term type from the notes to include let expressions:

datatype term = VAR of string
| LAM of string * term
| AP of term * term
| LET of (string * term) * term

We extend our concrete syntax to include terms of the form let V ARIABLE = TERM in TERM .
The scope of a let expression extends as far the right of the in as possible, and can be ended
with parentheses. For example, we might write let y = λx.x in y y, which would be rep-
resented in abstract syntax as LET ((VAR "y",LAM("x",VAR "x")),AP(VAR "y",VAR "y")).
Extend the λ-calculus parser at the end of the notes to handle let expressions.

7. OPTIONAL: Consider the following datatype representing regular expressions, restricted
to not include the Kleene star (taken from 15-150):

datatype regex = Zero
| One
| Char of char
| Times of regex * regex
| Plus of regex * regex

Write a parser regexP : regex parser, which transforms strings representing regular expres-
sions into values of type regex. Your parser must support parentheses. We use concatenation
to represent Times and + to represent Plus. So ”(ab) + c” should be parsed to

Plus (Times (Char #"a",Char #"b"), Char #"c").

Hint: You’ll definitely want to use chainl1, or just chainl if you’re feeling clever.

8. OPTIONAL: We extend our regex datatype to include the Kleene star:

datatype regex = ...
| Star of regex

Extend your parser to handle regular expression strings containing the postfix Kleene star.
For example, ”(a∗b)∗∗c∗” should be parsed to

Times (Star (Star (Times (Star (Char #"a"),Char #"b"))),Star (Char #"c"))

Hint: You’ll probably want to write a postfix combinator, which functions dually to the
prefix combinator you’ve already written.

2


