Dependent Type Theory

Cameron Wong
98-317 Hype For Types

2020-04-16

Last Time

® Types depend on values

® (’a, n) vec as the type of length-n lists
® n fin as the type of naturals less than n

Refinements

e Lift all values up to the type level

® |nstead of complicated encodings like using succ and fin as
type-level functions, just refer to values in types

® nth: (’a,n) vec -> {x:nat | x < n} -> ’a

Refinements

Can also bind arguments, eg

® repeat: {n:int} -> {x:’a} -> (’a,n) vec

Refinements

Advantages

® Very easy to understand

® Requires no fancy tricks like ’a fin

Onto Theory

Driving question:
What does it mean for a type to depend on a value?

Onto Theory

Driving question:
What is the type { x:t | p(x) }7?

o

What is a refined type?

Types = Sets?

nat = N

int =7

71 — T2 = (set-theoretic function)
7T list =N—>7T

Types as sets

Types as sets

® Refinements become very simple — just use set
comprehension!

e {x:t | px)} ={xeT|px)}

Types as sets

Advantages
® Very intuitive

® Can apply existing set theory research to type theory

Disadvantages

o Well...

<o <@r 4

Q>

Types as sets

datatype t

T of

t -> bool

Types as sets

® Let S be the set representing the type t

e Certainly, |S| = |S — bool|

Types as sets

Cantor’s Theorem
For any set A, |A| < |P(A)|.

Types as sets

® S — bool is equivalent to P(S)
e Uh-oh...

Disadvantages

® |t's unsound!

<o <@r 4

Q>

Q>

What is a refined type?

Recall: Curry-Howard Isomorphism

What is a refined type?

Curry-Howard Isomorphism
Types are propositions, programs are proofs

Types as propositions

Review
Algebraic types (+ functions) correspond to propositional logic (or
zeroth-order logic):

® PAQ corresponds to A x B
® PV @ corresponds to A+ B
® P = (@ corresponds to A — B

Types as propositions

What about first-order logic?

Quantification

Quantification

For any x : 7, p(x) is a proposition.

Quantification

For any x : 7, p(x) is a prepesitien type.

Quantification

p is a function 7 — type

Q>

Existentials

How to prove 3(x : 7).p(x)?

Existentials

Need:
® Some value v : 7

® A proof of the proposition p(v)

Existentials

Need:

e Avaluev:t

® A proeef program of the-prepesition type p(v)

Existentials

Need:
o A value expression v : T

* A proef program expression of the-prepesition type p(v)

Existentials

A pair of expressions is a tuple!

Existentials

Dependent tuple: X(x : 7).p(x)

Fle @7 MNe:p(er)
M (e1,e) : X(x: 7).p(x)

Mee:X(x:7).p(x)
M-me:r

M-e:X(x:7).p(x)
I+ me: p(mie)

Existentials

Observation:
If p(x) = 7 is a constant function, then X(x : 71).p(x) is the same
as 71 X T2

Existentials

Observation:
71 X T2 is "1 added 7 times”

Quantification

® >(x:7).p(x) corresponds to I(x : 7).p(x)

. corresponds to V(x : 7).p(x)

Universals

What is a proof of V(x : 7).p(x)?

Universals

Given a value v : 7, produce a proof of the proposition p(v)

Universals

Given a value v : 7, produce a preef expression of the—propesition
type p(v)

Universals

This is a function of type 7 — p(v)

Universals

Dependent function: M(x : 7).p(x)

Mx:7ke:p(x)
FEAx:7).e:N(x:7).p(x)

MEep: N(x:71).p(x) NFe:r
M-er ex:p(er)

Universals

Observation:
If p(x) = 12, then MN(x : 71).p(x) is equivalent to 71 — 7

Quantification

® >(x:7).p(x) corresponds to I(x : 7).p(x)
® M(x : 7).p(x) corresponds to V(x : 7).p(x)

Refinements

Back to refinements
What is {x:t | p(x)}?

Refinements

o {x:t | p(x)}is X(x:t).p(x)
e {x:t} —> p(x) is M(x: t).p(x)

Refinements

Note that regular functions can be subsumed by lM-types!
int -> int ~ M(_: int).(_: int)

What's in a proof?

Next Question:
How to prove the proposition p(x)?

What's in a proof?

Next Question:

How to preve-the-prepesition write a program of type p(x)?

What's in a proof?

Next Question:

How to preve-thepropesition write a program of type 3 < 57

What's in a proof?

What is the definition of <p.¢?

What's in a proof?

fun 0 < s(_)

s(n) < s(m)

What's in a proof?

3<bh~m2<4~~1<3~~»0<2~ true

What's in a proof?

3<bhm2<4~1<3~0<2~ true
M~ Y—~— = M~ N~~~
bool bool bool bool bool

What's in a proof?

3<h»w2<4~»1<3»0<2~ T
M~ Y~ ~~— M~ =
type type type type type

What's in a proof?

Curry-Howard

® The type unit (or 1) corresponds to the proposition T (true)
® The type void (or 0) corresponds to the proposition L (false)

What's in a proof?

The type 3 < 5 is equivalent to unit!

Refl: (3 <)

(O B =

«E>»

Q>

What's in a proof?

Refl = “true by definition”

What's in a proof?

(3, Refl) : {x:int | x < 5}

What's in a proof?

For usability:

3 : {x:int | x < 5}

Example

type _ vec = []l : ’a vec

| (::) : ’a * ’a vec -> ’a vec
(x repeat : int -> ’a -> ’a vec *)
fun repeat = _

Example

type _ vec

(* repeat
fun repeat

[: (’a, 0) vec
(::) : a * (’a, n) vec -> (’a, n+l) vec

{n:nat} -> {x:’a} -> {1:(’a,n) vec} *)

Example

type _ vec

(* repeat

{1:(’a,n) vec

*)

fun repeat

= [
|

(::)

(’a, 0) vec

’a * (’a, n) vec -> (’a, n+1) vec

{n:nat} -> {x:’a} ->

forall (m < n)

nth m 1

x}

Example

repeat : M(n :nat).MNM(x : «).X(/: (e, n) vec).
M(m: X(m' :nat).(m" < n)).(nth / (m1m) = x)

Example

fun repeat 0 x = ([], fn (m,p) => _)
| repeat n x

Example

phastype m< 0~ 1L,sop:0

fun repeat 0 x = ([], fn (m,p) => abort p)
| repeat n x

Example

fun repeat 0 x
| repeat n x
(* xs

(a,

1,

* p : {m:nat |

*)

let val (xs, p)

in

end

fn (m,p)

n-1) vec
m < n}

=> abort p)

-> nth xs m =

repeat (n-1) x

X

Example

fun repeat 0 x = ([],

fn (m,p) => abort p)
| repeat n x =

(¥ xs : (’a, n-1) vec
* p : {m:nat | m < n} -> nth xs m = x
*)

let val (xs, p)

repeat (n-1) x
(¥ _: {m:nat | m < n} -> (nth (x::xs) m = x) *)
in (x::xs, _)

end

Example

fun repeat 0 x =

([1, fn (m,p)

repeat n x =

(* xs (’a, n-1) vec
* P {m:nat | m < n-1}
*)
let val (xs, p) = repeat
(x p° m < n *)
in (x::xs, fn (0,p’) =>
| (m,p’) =>

end

=> abort p)

-> nth xs m = x

(n-1) x

Refl (*x defn of nth *)
_)

Example

fun repeat 0 x = ([], fn (m,
| repeat n x =
(* xs (’a, n-1) vec
* p {m:nat | m < n-
*)

let val (xs, p) =
(* By definition of <,
* proof of m-1 < n-1
*)
in (x:

:xs, fn (0,p’)

| (m,p?)

end

repeat (n-1) x

p) => abort p)

1}

-> nth xs m = x

[p m < n] is also a
=> Refl
(* (m-1,p’) is
* Sigma(x:nat).(x<n-1)
*)

=> p(m-1, p’))

