
Dependent Type Theory

Cameron Wong

98-317 Hype For Types

2020-04-16

Last Time

• Types depend on values
• (’a, n) vec as the type of length-n lists
• n fin as the type of naturals less than n

Refinements

• Lift all values up to the type level

• Instead of complicated encodings like using succ and fin as
type-level functions, just refer to values in types

• nth: (’a,n) vec -> {x:nat | x < n} -> ’a

Refinements

Can also bind arguments, eg

• repeat: {n:int} -> {x:’a} -> (’a,n) vec

Refinements

Advantages

• Very easy to understand

• Requires no fancy tricks like ’a fin

Onto Theory

Driving question:
What does it mean for a type to depend on a value?

Onto Theory

Driving question:
What is the type { x:t | p(x) }?

What is a refined type?

What is a refined type?

Types = Sets?

Types as sets

• nat = N
• int = Z
• τ1 → τ2 = (set-theoretic function)

• τ list = N→ τ

Types as sets

• Refinements become very simple – just use set
comprehension!
• {x:t | p(x)} = {x ∈ T | p(x)}

Types as sets

Advantages

• Very intuitive

• Can apply existing set theory research to type theory

Types as sets

Disadvantages

• Well...

Types as sets

datatype t = T of t -> bool

Types as sets

• Let S be the set representing the type t

• Certainly, |S | = |S → bool|

Types as sets

Cantor’s Theorem
For any set A, |A| < |P(A)|.

Types as sets

• S → bool is equivalent to P(S)

• Uh-oh...

Types as sets

Disadvantages

• It’s unsound!

Types as sets

What is a refined type?

Recall: Curry-Howard Isomorphism

What is a refined type?

Curry-Howard Isomorphism

Types are propositions, programs are proofs

Types as propositions

Review
Algebraic types (+ functions) correspond to propositional logic (or
zeroth-order logic):

• P ∧ Q corresponds to A× B

• P ∨ Q corresponds to A + B

• P ⇒ Q corresponds to A→ B

Types as propositions

What about first-order logic?

Quantification

• ∃(x : τ).p(x)

• ∀(x : τ).p(x)

Quantification

For any x : τ , p(x) is a proposition.

Quantification

For any x : τ , p(x) is a proposition type.

Quantification

p is a function τ → type

Quantification

Existentials

How to prove ∃(x : τ).p(x)?

Existentials

Need:

• Some value v : τ

• A proof of the proposition p(v)

Existentials

Need:

• A value v : τ

• A proof program of the proposition type p(v)

Existentials

Need:

• A value expression v : τ

• A proof program expression of the proposition type p(v)

Existentials

A pair of expressions is a tuple!

Existentials

Dependent tuple: Σ(x : τ).p(x)

Γ ` e1 : τ Γ ` e2 : p(e1)

Γ ` 〈e1, e2〉 : Σ(x : τ).p(x)

Γ ` e : Σ(x : τ).p(x)

Γ ` π1e : τ

Γ ` e : Σ(x : τ).p(x)

Γ ` π2e : p(π1e)

Existentials

Observation:
If p(x) = τ2 is a constant function, then Σ(x : τ1).p(x) is the same
as τ1 × τ2

Existentials

Observation:
τ1 × τ2 is “τ2 added τ1 times”

Quantification

• Σ(x : τ).p(x) corresponds to ∃(x : τ).p(x)

• corresponds to ∀(x : τ).p(x)

Universals

What is a proof of ∀(x : τ).p(x)?

Universals

Given a value v : τ , produce a proof of the proposition p(v)

Universals

Given a value v : τ , produce a proof expression of the proposition
type p(v)

Universals

This is a function of type τ → p(v)

Universals

Dependent function: Π(x : τ).p(x)

Γ, x : τ ` e : p(x)

Γ ` λ(x : τ).e : Π(x : τ).p(x)

Γ ` e1 : Π(x : τ).p(x) Γ ` e2 : τ

Γ ` e1 e2 : p(e1)

Universals

Observation:
If p(x) = τ2, then Π(x : τ1).p(x) is equivalent to τ1 → τ2

Quantification

• Σ(x : τ).p(x) corresponds to ∃(x : τ).p(x)

• Π(x : τ).p(x) corresponds to ∀(x : τ).p(x)

Refinements

Back to refinements
What is {x:t | p(x)}?

Refinements

• {x:t | p(x)} is Σ(x : t).p(x)

• {x:t} -> p(x) is Π(x : t).p(x)

Refinements

Note that regular functions can be subsumed by Π-types!
int -> int Π(: int).(λ : int)

What’s in a proof?

Next Question:
How to prove the proposition p(x)?

What’s in a proof?

Next Question:
How to prove the proposition write a program of type p(x)?

What’s in a proof?

Next Question:
How to prove the proposition write a program of type 3 < 5?

What’s in a proof?

What is the definition of <nat?

What’s in a proof?

fun 0 < s(_) = true

| _ < 0 = false

| s(n) < s(m) = n < m

What’s in a proof?

3 < 5 2 < 4 1 < 3 0 < 2 true

What’s in a proof?

3 < 5︸ ︷︷ ︸
bool

 2 < 4︸ ︷︷ ︸
bool

 1 < 3︸ ︷︷ ︸
bool

 0 < 2︸ ︷︷ ︸
bool

 true︸ ︷︷ ︸
bool

What’s in a proof?

3 < 5︸ ︷︷ ︸
type

 2 < 4︸ ︷︷ ︸
type

 1 < 3︸ ︷︷ ︸
type

 0 < 2︸ ︷︷ ︸
type

 >︸︷︷︸
type

What’s in a proof?

Curry-Howard

• The type unit (or 1) corresponds to the proposition > (true)

• The type void (or 0) corresponds to the proposition ⊥ (false)

What’s in a proof?

The type 3 < 5 is equivalent to unit!

What’s in a proof?

Refl : (3 < 5)

What’s in a proof?

Refl = “true by definition”

What’s in a proof?

(3, Refl) : {x:int | x < 5}

What’s in a proof?

For usability:

3 : {x:int | x < 5}

Example

type _ vec = [] : ’a vec

| (::) : ’a * ’a vec -> ’a vec

(* repeat : int -> ’a -> ’a vec *)

fun repeat = _

Example

type _ vec = [] : (’a, 0) vec

| (::) : ’a * (’a, n) vec -> (’a, n+1) vec

(* repeat : {n:nat} -> {x:’a} -> {l:(’a,n) vec} *)

fun repeat = _

Example

type _ vec = [] : (’a, 0) vec

| (::) : ’a * (’a, n) vec -> (’a, n+1) vec

(* repeat : {n:nat} -> {x:’a} ->

{l:(’a,n) vec | forall (m < n) . nth m l = x}

*)

fun repeat = _

Example

repeat : Π(n : nat).Π(x : α).Σ(l : (α, n) vec).

Π(m : Σ(m′ : nat).(m′ < n)).(nth l (π1m) = x)

Example

fun repeat 0 x = ([], fn (m,p) => _)

| repeat n x = _

Example

p has type m < 0 ⊥, so p : 0

fun repeat 0 x = ([], fn (m,p) => abort p)

| repeat n x = _

Example

fun repeat 0 x = ([], fn (m,p) => abort p)

| repeat n x =

(* xs : (’a, n-1) vec

* p : {m:nat | m < n} -> nth xs m = x

*)

let val (xs , p) = repeat (n-1) x

in _

end

Example

fun repeat 0 x = ([], fn (m,p) => abort p)

| repeat n x =

(* xs : (’a, n-1) vec

* p : {m:nat | m < n} -> nth xs m = x

*)

let val (xs , p) = repeat (n-1) x

(* _: {m:nat | m < n} -> (nth (x::xs) m = x) *)

in (x::xs, _)

end

Example

fun repeat 0 x = ([], fn (m,p) => abort p)

| repeat n x =

(* xs : (’a, n-1) vec

* p : {m:nat | m < n-1} -> nth xs m = x

*)

let val (xs , p) = repeat (n-1) x

(* p’ : m < n *)

in (x::xs, fn (0,p’) => Refl (* defn of nth *)

| (m,p’) => _)

end

Example

fun repeat 0 x = ([], fn (m,p) => abort p)

| repeat n x =

(* xs : (’a, n-1) vec

* p : {m:nat | m < n-1} -> nth xs m = x

*)

let val (xs , p) = repeat (n-1) x

(* By definition of <, [p : m < n] is also a

* proof of m-1 < n-1

*)

in (x::xs, fn (0,p’) => Refl

(* (m-1,p’) is

* Sigma(x:nat).(x<n-1)

*)

| (m,p’) => p(m-1, p’))

end

