Compilation

Hype for Types

March 30, 2021

=] & = E DA
Hype for Types Compilation

Outline

=] & = E DA
Hype for Types Compilation

Why compile?

@ When we write code, we want to run the code.

=] & = E DA
Hype for Types Compilation

Why compile?

@ When we write code, we want to run the code.

@ We could write a simple “expression evaluator”. However, our code
would be very slow.

Hype for Types Compilation March 30, 2021 3/17

Why compile?

@ When we write code, we want to run the code.

@ We could write a simple “expression evaluator”. However, our code
would be very slow.

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Hype for Types Compilation March 30, 2021 3/17

Why compile?

@ When we write code, we want to run the code.

@ We could write a simple “expression evaluator”. However, our code
would be very slow.

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

@ Then, we can take advantage of a computer’s efficient hardware!

Hype for Types Compilation March 30, 2021 3/17

Why compile?

@ When we write code, we want to run the code.

@ We could write a simple “expression evaluator”. However, our code
would be very slow.

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

@ Then, we can take advantage of a computer’s efficient hardware!

Hype for Types Compilation March 30, 2021 3/17

Why compile?

@ When we write code, we want to run the code.

@ We could write a simple “expression evaluator”. However, our code
would be very slow.

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

@ Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!

Hype for Types Compilation March 30, 2021 4/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

Q Elaborate (sugar-free, “simplified” language)

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!

Hype for Types Compilation March 30, 2021 4/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

Q Elaborate (sugar-free, “simplified” language)
@ CPS Convert (turn functions into CPS)

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!

Hype for Types Compilation March 30, 2021 4/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.
O Elaborate (sugar-free, “simplified” language)
@ CPS Convert (turn functions into CPS)

© Closure Convert (remove binding/local scope)

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!

Hype for Types Compilation March 30, 2021 4/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.
O Elaborate (sugar-free, “simplified” language)
@ CPS Convert (turn functions into CPS)
© Closure Convert (remove binding/local scope)

@ Hoist (move local functions to top-level)

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!

Hype for Types Compilation March 30, 2021 4/17

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.
O Elaborate (sugar-free, “simplified” language)
@ CPS Convert (turn functions into CPS)
© Closure Convert (remove binding/local scope)
@ Hoist (move local functions to top-level)

@ Alloc (explicitly use malloc and garbage collection)

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!
e

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.
O Elaborate (sugar-free, “simplified” language)
@ CPS Convert (turn functions into CPS)
© Closure Convert (remove binding/local scope)
@ Hoist (move local functions to top-level)
@ Alloc (explicitly use malloc and garbage collection)
O Abstract Assembly Generation

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!
e

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

Elaborate (sugar-free, “simplified” language)

CPS Convert (turn functions into CPS)

Closure Convert (remove binding/local scope)
Hoist (move local functions to top-level)

Alloc (explicitly use malloc and garbage collection)

Abstract Assembly Generation

000000

Register Allocation

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!
e

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

Elaborate (sugar-free, “simplified” language)

CPS Convert (turn functions into CPS)

Closure Convert (remove binding/local scope)
Hoist (move local functions to top-level)

Alloc (explicitly use malloc and garbage collection)

Abstract Assembly Generation

000000

Register Allocation

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!
e

How to compile?

Rather than going straight to Assembly, we'll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

Elaborate (sugar-free, “simplified” language)

CPS Convert (turn functions into CPS)

Closure Convert (remove binding/local scope)
Hoist (move local functions to top-level)

Alloc (explicitly use malloc and garbage collection)

Abstract Assembly Generation

000000

Register Allocation

End with assembly.!

'For more information, take 15-417 for (1-5) and 15-411-for (6-7)!
e

CPS Conversion

=] & = E DA
Hype for Types Compilation

CPS and Assembly

In assembly, there's a difference between “values” and “expressions”.

‘ return (2 * 3) + (4 - 5)

We can only call a function on two “values”, and we can only store an
“expression”.

tmpl <- mul 2 3

tmp2 <- sub 4 5

tmp3 <- add tmpl tmp2
ret tmp3

This looks like CPS!

mul 2 3 (fn tmpl =>

sub 4 5 (fn tmp2 =>

add tmpl tmp2 (fn tmp3 =>
ret tmp3)))

We add a syntactic distinction between values and expressions.

Hype for Types Compilation March 30, 2021 6/17

Why CPS?

Big Idea

Expressions operate on values and then pass along the result

=] & = E DA
Hype for Types Compilation

Why CPS?

Big Idea
Expressions operate on values and then pass along the result (to a
continuation).

We claim that turning our functions into CPS is useful. Why?

Main ldea
CPS makes control flow explicit. (Chooses the order in which to evaluate
each expression.)

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There's no “stack”!)

Hype for Types Compilation March 30, 2021 7/17

Language: Direct / Cps (Types)

T = T = T2 function T = T cont continuation
| T X binary product | 11X binary product
| unit nullary product | unit nullary product
| bool booleans | bool booleans

[} = =
Hype for Types Compilation

Language: Direct / Cps (Expressions)

e u= X
| Ax:T.e

)
| (e, e)

| true/false
| eae

| fst(e)
| snd(e)

| if ey then e; else ey

| print e

variable
lambda function

unit
tuple

boolean literal
function app.

first projection
second projection

printing effect

x
catch(x : 7). e

()

(vi, v2)
true/false
throw(vy,)

fst(v; x.e)
snd(v; x.e)

if v then e else ey

print (v; e)

Hype for Types Compilati

variable
continuation

unit
tuple

boolean literal
throw

first projection
second projection

printing effect

March 30, 2021

9/17

Type Directed Translation
Idea

In addition to typechecking our code, we'll output a translation.

=] & = E DA
Hype for Types Compilation

Type Directed Translation

Idea
In addition to typechecking our code, we'll output a translation. J

@ Instead of 7 type, we have 7 ~ 7/,

Today, rather than [v/x]e, we'll write e[x — v] for convenience.

Notation J

Hype for Types Compilation March 30, 2021 10/17

Type Directed Translation

Idea
In addition to typechecking our code, we'll output a translation. J

@ Instead of 7 type, we have 7 ~ 7/,

o Insteadof TFe: 7, we have - e: 7~ €.

Today, rather than [v/x]e, we'll write e[x — v] for convenience.

Notation J

Hype for Types Compilation March 30, 2021 10/17

Type Translation

unit ~ unit

=] & = E DA
Hype for Types Compilation

Type Translation

unit ~ unit

bool ~~ bool

=] & = E DA
Hype for Types Compilation

Type Translation

unit ~ unit bool ~~ bool
/ /

TL ~ Ty To ~> Th

T1 X T ~> ’7’{ X Tﬁ

=] & = E DA
Hype for Types Compilation

Type Translation

unit ~ unit bool ~~ bool
/ /

TL ~ Ty To ~> Th

T1 X T ~> 7’{ X Tﬁ

T1 WT{

TQWTé
T1 — T2 ~>

=] & = E DA
Hype for Types Compilation

Type Translation

unit ~~ unit bool ~~ bool
/ / / /
T1 ~ T]. Ty ~> T2 T1 ~> T]_ T2 ~~> 7—2
TL X Tp ~» T] X Th 71 — T ~ (71 X T5 cont) cont

Hype for Types Compilation March 30, 2021 11/17

Type Translation

unit ~~ unit bool ~ bool
/ / / /
T~ Tq T2 ~> To T~ Ty T2 ~> T
TL X Tp ~» T] X Th 71 — T ~ (71 X T5 cont) cont
Curry-Howard Isomorphism
A = B is, classically, 7(A A =B). (Get hype!) J

Hype for Types Compilation March 30, 2021 11/17

Expression Translation

Mx:7hkx:7~k kx

=] & = E DA
Hype for Types Compilation

Expression Translation

Mx:7hkx:7~k kx

IE () unit ~, k ()

=] & = E DA
Hype for Types Compilation

Expression Translation

Mox:Th X7~y kx IE () unit ~, k ()

The:mi~e The:ima e

TE (er, &) : 11 X T2~ el[ki = r. &ylko — . k (r1, n)]]

Hype for Types Compilation March 30, 2021 12 /17

Expression Translation

Mox:Th X7~y kx IE () unit ~¢ k ()

The:mi~e The:ima e

TE (er, &) : 11 X T2~ el[ki = r. &ylko — . k (r1, n)]]

The:T X1~y €
[+ fst(e) : 11~y €[ko > r. fst(r;r. k)]

Hype for Types Compilation March 30, 2021 12/17

Expression Translation

Mox:ThE X7~y kx IE () unit ~¢ k ()

The:mi~e The:ima e

TE (er, &) : 11 X T2~ el[ki = r. &ylko — . k (r1, n)]]

The:T X1~y €
[+ fst(e) : 11~y €[ko > r. fst(r;r. k)]

rl—eZT1XT2M->kOe’

[+ snd(e): o~ €ko — r. snd(r; ra. k)]

Hype for Types Compilation

March 30, 2021 12/17

Expression Translation

F,X:Tll—e:Tgwkoe’ Tlv~>T{ 7'2«~>7'£

MEXx:m. e — T~
k (catch(p : 71 x 75 cont). fst(p; x.snd(p; r.€'[ko — v. throw(r, v)])))

Hype for Types Compilation March 30, 2021 13 /17

Expression Translation

Cox:mibe:m~y € L~ T Ty~ T

MEXx:m. e — T~
k (catch(p : 71 x 75 cont). fst(p; x.snd(p; r.€'[ko — v. throw(r, v)])))

The o m~ge Thre:mwwg,e T~

[e e: 7~y el[ki — f. eh[ka — x. throw(f, (x, catch(r : 75). k r))]]

Hype for Types Compilation March 30, 2021 13 /17

Expression Translation

[+ true : bool ~(k true

=] & = E DA
Hype for Types Compilation

Expression Translation

[+ true : bool ~(k true

[false : bool ~, k false

=] & = E DA
Hype for Types Compilation

Expression Translation

[+ true : bool ~(k true [+ false : bool ~~, k false

[Fb:bool~sy, b The T~y e The:r—y e

["Hif b then ¢ else & : 7~
b'[kp + r. if r then ef[k; — k] else &)[ko — K]]

Hype for Types Compilation March 30, 2021 14 /17

Conclusion

=] & = E DA
Hype for Types Compilation

There's Plenty More!

Writing compilers is a difficult, yet rewarding, enterprise.
If this lecture seems cool, we recommend you consider 15-417 and 15-411!

Hype for Types Compilation March 30, 2021 16 /17

Summary

o Compilers are “language translators”, and often compositions of
smaller “language translators”.
@ Types guide our thinking when we implement the translations!
» Each language is “real”, complete with types and an evaluation
strategy for all well-typed programs.
» Bonus: we can do optimization at any point without worrying about
special “invariants”!
» Easier to debug, too. If output code doesn't typecheck, it's a bug.
@ By thinking compositionally, we slowly transform high-level code into
Assembly.

Hype for Types Compilation March 30, 2021 17 /17

	Outline
	CPS Conversion
	Conclusion

