
Compilation

Hype for Types

March 30, 2021

Hype for Types Compilation March 30, 2021 1 / 17

Outline

Hype for Types Compilation March 30, 2021 2 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

Why compile?

When we write code, we want to run the code.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation March 30, 2021 3 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Start with user language.

1 Elaborate (sugar-free, “simplified” language)

2 CPS Convert (turn functions into CPS)

3 Closure Convert (remove binding/local scope)

4 Hoist (move local functions to top-level)

5 Alloc (explicitly use malloc and garbage collection)

6 Abstract Assembly Generation

7 Register Allocation

End with assembly.1

1For more information, take 15-417 for (1-5) and 15-411 for (6-7)!
Hype for Types Compilation March 30, 2021 4 / 17

CPS Conversion

Hype for Types Compilation March 30, 2021 5 / 17

CPS and Assembly

In assembly, there’s a difference between “values” and “expressions”.

return (2 * 3) + (4 - 5)

We can only call a function on two “values”, and we can only store an
“expression”.

tmp1 <- mul 2 3

tmp2 <- sub 4 5

tmp3 <- add tmp1 tmp2

ret tmp3

This looks like CPS!

mul 2 3 (fn tmp1 =>

sub 4 5 (fn tmp2 =>

add tmp1 tmp2 (fn tmp3 =>

ret tmp3)))

We add a syntactic distinction between values and expressions.

Hype for Types Compilation March 30, 2021 6 / 17

Why CPS?

Big Idea

Expressions operate on values and then pass along the result

(to a
continuation).

We claim that turning our functions into CPS is useful. Why?

Main Idea

CPS makes control flow explicit. (Chooses the order in which to evaluate
each expression.)

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There’s no “stack”!)

Hype for Types Compilation March 30, 2021 7 / 17

Why CPS?

Big Idea

Expressions operate on values and then pass along the result (to a
continuation).

We claim that turning our functions into CPS is useful. Why?

Main Idea

CPS makes control flow explicit. (Chooses the order in which to evaluate
each expression.)

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There’s no “stack”!)

Hype for Types Compilation March 30, 2021 7 / 17

Language: Direct / Cps (Types)

τ ::= τ1 → τ2 function

| τ1 × τ2 binary product
| unit nullary product

| bool booleans

τ ::= τ cont continuation

| τ1 × τ2 binary product
| unit nullary product

| bool booleans

Hype for Types Compilation March 30, 2021 8 / 17

Language: Direct / Cps (Expressions)

e ::= x variable

| λx : τ. e lambda function

| 〈〉 unit
| 〈e1, e2〉 tuple

| true/false boolean literal

| e1 e2 function app.

| fst(e) first projection
| snd(e) second projection

| if e0 then e1 else e2

| print e printing effect

v ::= x variable

| catch(x : τ). e continuation

| 〈〉 unit
| 〈v1, v2〉 tuple

| true/false boolean literal

e ::= throw(v1, v2) throw

| fst(v ; x.e) first projection
| snd(v ; x.e) second projection

| if v then e1 else e2

| print (v ; e) printing effect

Hype for Types Compilation March 30, 2021 9 / 17

Type Directed Translation

Idea

In addition to typechecking our code, we’ll output a translation.

Instead of τ type, we have τ τ ′.

Instead of Γ ` e : τ , we have Γ ` e : τ k e ′.

Notation

Today, rather than [v/x]e, we’ll write e[x 7→ v] for convenience.

Hype for Types Compilation March 30, 2021 10 / 17

Type Directed Translation

Idea

In addition to typechecking our code, we’ll output a translation.

Instead of τ type, we have τ τ ′.

Instead of Γ ` e : τ , we have Γ ` e : τ k e ′.

Notation

Today, rather than [v/x]e, we’ll write e[x 7→ v] for convenience.

Hype for Types Compilation March 30, 2021 10 / 17

Type Directed Translation

Idea

In addition to typechecking our code, we’ll output a translation.

Instead of τ type, we have τ τ ′.

Instead of Γ ` e : τ , we have Γ ` e : τ k e ′.

Notation

Today, rather than [v/x]e, we’ll write e[x 7→ v] for convenience.

Hype for Types Compilation March 30, 2021 10 / 17

Type Translation

unit unit

bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Type Translation

unit unit bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Type Translation

unit unit bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Type Translation

unit unit bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Type Translation

unit unit bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2 (τ ′1 × τ ′2 cont) cont

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Type Translation

unit unit bool bool

τ1 τ ′1 τ2 τ ′2

τ1 × τ2 τ ′1 × τ ′2

τ1 τ ′1 τ2 τ ′2

τ1 → τ2 (τ ′1 × τ ′2 cont) cont

Curry-Howard Isomorphism

A⇒ B is, classically, ¬(A ∧ ¬B). (Get hype!)

Hype for Types Compilation March 30, 2021 11 / 17

Expression Translation

Γ, x : τ ` x : τ k k x

Γ ` 〈〉 : unit k k 〈〉

Γ ` e1 : τ1 k1 e ′1 Γ ` e2 : τ2 k2 e ′2

Γ ` 〈e1, e2〉 : τ1 × τ2 k e ′1[k1 7→ r1. e
′
2[k2 7→ r2. k 〈r1, r2〉]]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` fst(e) : τ1 k e ′[k0 7→ r . fst(r ; r1. k r1)]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` snd(e) : τ2 k e ′[k0 7→ r . snd(r ; r2. k r2)]

Hype for Types Compilation March 30, 2021 12 / 17

Expression Translation

Γ, x : τ ` x : τ k k x Γ ` 〈〉 : unit k k 〈〉

Γ ` e1 : τ1 k1 e ′1 Γ ` e2 : τ2 k2 e ′2

Γ ` 〈e1, e2〉 : τ1 × τ2 k e ′1[k1 7→ r1. e
′
2[k2 7→ r2. k 〈r1, r2〉]]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` fst(e) : τ1 k e ′[k0 7→ r . fst(r ; r1. k r1)]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` snd(e) : τ2 k e ′[k0 7→ r . snd(r ; r2. k r2)]

Hype for Types Compilation March 30, 2021 12 / 17

Expression Translation

Γ, x : τ ` x : τ k k x Γ ` 〈〉 : unit k k 〈〉

Γ ` e1 : τ1 k1 e ′1 Γ ` e2 : τ2 k2 e ′2

Γ ` 〈e1, e2〉 : τ1 × τ2 k e ′1[k1 7→ r1. e
′
2[k2 7→ r2. k 〈r1, r2〉]]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` fst(e) : τ1 k e ′[k0 7→ r . fst(r ; r1. k r1)]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` snd(e) : τ2 k e ′[k0 7→ r . snd(r ; r2. k r2)]

Hype for Types Compilation March 30, 2021 12 / 17

Expression Translation

Γ, x : τ ` x : τ k k x Γ ` 〈〉 : unit k k 〈〉

Γ ` e1 : τ1 k1 e ′1 Γ ` e2 : τ2 k2 e ′2

Γ ` 〈e1, e2〉 : τ1 × τ2 k e ′1[k1 7→ r1. e
′
2[k2 7→ r2. k 〈r1, r2〉]]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` fst(e) : τ1 k e ′[k0 7→ r . fst(r ; r1. k r1)]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` snd(e) : τ2 k e ′[k0 7→ r . snd(r ; r2. k r2)]

Hype for Types Compilation March 30, 2021 12 / 17

Expression Translation

Γ, x : τ ` x : τ k k x Γ ` 〈〉 : unit k k 〈〉

Γ ` e1 : τ1 k1 e ′1 Γ ` e2 : τ2 k2 e ′2

Γ ` 〈e1, e2〉 : τ1 × τ2 k e ′1[k1 7→ r1. e
′
2[k2 7→ r2. k 〈r1, r2〉]]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` fst(e) : τ1 k e ′[k0 7→ r . fst(r ; r1. k r1)]

Γ ` e : τ1 × τ2 k0 e ′

Γ ` snd(e) : τ2 k e ′[k0 7→ r . snd(r ; r2. k r2)]

Hype for Types Compilation March 30, 2021 12 / 17

Expression Translation

Γ, x : τ1 ` e : τ2 k0 e ′ τ1 τ ′1 τ2 τ ′2

Γ ` λx : τ1. e : τ1 → τ2 k

k (catch(p : τ ′1 × τ ′2 cont). fst(p; x .snd(p; r .e ′[k0 7→ v . throw(r , v)])))

Γ ` e1 : τ1 → τ2 k1 e ′1 Γ ` e2 : τ1 k2 e ′2 τ2 τ ′2

Γ ` e1 e2 : τ2 k e ′1[k1 7→ f . e ′2[k2 7→ x . throw(f , 〈x , catch(r : τ ′2). k r〉)]]

Hype for Types Compilation March 30, 2021 13 / 17

Expression Translation

Γ, x : τ1 ` e : τ2 k0 e ′ τ1 τ ′1 τ2 τ ′2

Γ ` λx : τ1. e : τ1 → τ2 k

k (catch(p : τ ′1 × τ ′2 cont). fst(p; x .snd(p; r .e ′[k0 7→ v . throw(r , v)])))

Γ ` e1 : τ1 → τ2 k1 e ′1 Γ ` e2 : τ1 k2 e ′2 τ2 τ ′2

Γ ` e1 e2 : τ2 k e ′1[k1 7→ f . e ′2[k2 7→ x . throw(f , 〈x , catch(r : τ ′2). k r〉)]]

Hype for Types Compilation March 30, 2021 13 / 17

Expression Translation

Γ ` true : bool k k true

Γ ` false : bool k k false

Γ ` b : bool kb b
′ Γ ` e1 : τ k1 e ′1 Γ ` e2 : τ k2 e ′2

Γ ` if b then e1 else e2 : τ k

b′[kb 7→ r . if r then e ′1[k1 7→ k] else e ′2[k2 7→ k]]

Hype for Types Compilation March 30, 2021 14 / 17

Expression Translation

Γ ` true : bool k k true Γ ` false : bool k k false

Γ ` b : bool kb b
′ Γ ` e1 : τ k1 e ′1 Γ ` e2 : τ k2 e ′2

Γ ` if b then e1 else e2 : τ k

b′[kb 7→ r . if r then e ′1[k1 7→ k] else e ′2[k2 7→ k]]

Hype for Types Compilation March 30, 2021 14 / 17

Expression Translation

Γ ` true : bool k k true Γ ` false : bool k k false

Γ ` b : bool kb b
′ Γ ` e1 : τ k1 e ′1 Γ ` e2 : τ k2 e ′2

Γ ` if b then e1 else e2 : τ k

b′[kb 7→ r . if r then e ′1[k1 7→ k] else e ′2[k2 7→ k]]

Hype for Types Compilation March 30, 2021 14 / 17

Conclusion

Hype for Types Compilation March 30, 2021 15 / 17

There’s Plenty More!

Writing compilers is a difficult, yet rewarding, enterprise.
If this lecture seems cool, we recommend you consider 15-417 and 15-411!

Hype for Types Compilation March 30, 2021 16 / 17

Summary

Compilers are “language translators”, and often compositions of
smaller “language translators”.

Types guide our thinking when we implement the translations!
I Each language is “real”, complete with types and an evaluation

strategy for all well-typed programs.
I Bonus: we can do optimization at any point without worrying about

special “invariants”!
I Easier to debug, too. If output code doesn’t typecheck, it’s a bug.

By thinking compositionally, we slowly transform high-level code into
Assembly.

Hype for Types Compilation March 30, 2021 17 / 17

	Outline
	CPS Conversion
	Conclusion

