Category Theory (for Programmers)

Hype for Types

April 13, 2021

Hype for Types Category Theory (for Programmers)



Overview

@ Lots of patterns appear in math and programming.
@ Let's try to codify them!

@ We'll end up with some cool abstractions and tricks that make
programming simpler.

Big ldea
Category theory is the study of composition. J

Hype for Types Category Theory (for Programmers) April 13, 2021 2/31



What is a category?

Hype for Types Category Theory (for Programmers)



Some Algebraic Structures

What do these things have in common?
o Addition on natural numbers
@ Multiplication on natural numbers
@ String concatenation
@ Appending lists

@ Union on sets

Some observations:
@ Binary operations
@ Associative

o Identity element

Hype for Types Category Theory (for Programmers) April 13, 2021 4/31



Monoids

Definition
A monoid M is the data:
@ type t
o valuez : t
evaluef : t -> t -> t
@ upholds f x z=f z x =x
@ upholds £ x (f y z) =£f (£ x y) z
Ths abstraction is handy! e.g.:
Seq.reduce M.f M.z : t seq -> t

Hype for Types Category Theory (for Programmers) April 13, 2021 5/31



Another Kind of Structure

What do these have in common?
@ Functions on sets

Monoid homomorphisms

Implications between propositions

°
@ The < relation on natural numbers
°
o (Total) functions in SML

Some observations:
@ “Things"
@ Directed correspondences between the things

> “Reflexive”
» Compositional/ “transitive”

Hype for Types Category Theory (for Programmers) April 13, 2021 6/31



Categories

Definition
A category C is the data:
@ a collection of objects, Ob(C)
@ a collection of arrows, Arr(C)
e for every arrow, a source x € Ob(C)
o for every arrow, a target y € Ob(C)
e for every object x € Ob(C), an arrow idy : x — x
@ for every arrow u:x — yand v:y — z, an arrow uov :x — z

o foreveryarrow f :w = x, g:x =y, h:y — z,
fo(goh)=(fog)oh

We'll focus on the category of SML types, with total functions as the
arrows.

Hype for Types Category Theory (for Programmers) April 13, 2021 7/31



The Category of SML Types

bool ¥ int T~

st snd
(_,x) =>x >0 \

not b001< x => if x then 1 elylnt w)E
Bool.toString Int.toString int option
\\\\N l</////Int.fromString
. /
string

By convention, we omit:
o Identity arrows (self-loops at types)

@ Compositions of arrows

Hype for Types Category Theory (for Programmers) April 13, 2021 8/31



Mappables!

Well, “functors”, but that’s already a thing in SML...
Hype for Types Category Theory (for Programmers)



From Category to Category

What would a transformation from category to category look like?

We must:
@ turn objects into objects

@ turn arrows into arrows

How about:

type ’a map_obj
fun map_arr f

’a list
List.map f

Hype for Types Category Theory (for Programmers) April 13, 2021

10/31



Visualizing Lists

. List.map f .
t list —— > u list

Hype for Types Category Theory (for Programmers)



Mappables?

Definition?
A mappable M is the data:
@ type ’a t
@ valuemap : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =
sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
end

Hype for Types Category Theory (for Programmers) April 13, 2021 12 /31



Which map?
What if we picked:

type ’a map_obj = ’a list

fun map_arrl f
fn => []

fun map_arr2 f

fn 1 => List.map f (List.rev 1)
fun map_arr3 f =
fn [] => []

| _::xs => List.map f xs

Problems:

map_arr id [1,2,3] a8 [1,2,3]

~

map_arr rev o map_arr tl =map_arr

Hype for Types Category Theory (for Programmers)

(rev o tl)

April 13, 2021

13/31



Mappables

Definition
A mappable M is the data:
@ type ’a t
@ valuemap : (’a -> ’b) -> ’a t -> ’b t

(*] uph0|ds map id =54 ¢ -> 74 t 1d

@ upholds map f o map g=map (f o g)

In other words:

signature MAPPABLE =
sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
(x invariants: ... %)
end

Hype for Types Category Theory (for Programmers) April 13, 2021 14 /31



Optimization: Loop Fusion!

If we have:

int [n] arr;

for (int i = 0; i < mn; i++)
arr[i] = f(arr[il);

for (int i = 0; i < n; i++)
arr[i] = g(arr[i]);

then it must be equivalent to:?

for (int i = 0; i < mn; i++)
arr[i] = g(f(arr[i]));

2Not just for lists - any data structure with a “sensible” notion of map works!

Hype for Types Category Theory (for Programmers) April 13, 2021 15 /31



Option Map

What does an option look like as a mappable?

structure Option MAPPABLE =
struct
type ’a t = ’a option
val map3 = fn f => fn
NONE => NONE
| SOME x => SOME (f x)
end

Notice: this satisfies the desired identity and composition properties!

3This is built-in to SML as Option.map!
Hype for Types Category Theory (for Programmers) April 13, 2021 16 /31




Some More Example Mappables

Lists
Options
Trees
Streams

Functions int -> ’a

i.e., (almost) anything polymorphic.

Conclusion
It's a useful abstraction. J

Hype for Types Category Theory (for Programmers) April 13, 2021 17 /31



Monads

Hype for Types Category Theory (for Programmers)



Culinary Composition

We're used to a few combinators for composition:

@op [|> : ’a *x (’a -> ’b) -> b
llpipe”
@op >>> : (’a -> ’b) * (b -> ’¢c) -> (’a -> ’c¢)

“forward composition”*

val getAvatar = fn token =>
readLine ()
| > parselnput
|> requestData token
| > toAvatar

val showAvatar =
getAvatar >>> savelmage

Life is good.

*Flipped arguments from op o; arguably, more “natural” /easier to work with.
Hype for Types Category Theory (for Programmers) April 13, 2021 19/31



Attack of the Real World

Here, we assumed:

val readLine : unit -> string

val parselnput : string -> packet

val requestData : token -> packet -> userData
val toAvatar : userData -> image

val saveImage : image -> filename

However, some of these steps could fail.

(* T type error! *)

val readLine : unit -> string option
val parselnput : string -> packet option
val requestData : token -> packet -> userData option
val savelmage : image -> filename option
val getAvatar = fn token =>
readLine () (*x string option *)

| > parselnput (* string -> packet option *)

Hype for Types Category Theory (for Programmers) April 13, 2021

20/31



First Attempt: Pain

val getAvatar = fn token =>
case readlLine () of NONE => NONE
| SOME x1 => (
case parselnput x1 of NONE => NONE
| SOME x2 => (
case requestData token x2 of NONE => NONE
| SOME x3 => SOME (toAvatar x3)

val showAvatar =
getAvatar >>> (fn NONE => NONE
| SOME image => savelmage image)

Observation

This is horrible! So much “plumbing” to propagate NONE. Before, the
core logic was clearly present; now, it's obscured.

v

Hype for Types Category Theory (for Programmers) April 13, 2021 21/31



A New Kind of Composition

Let's reimagine our combinators

as if everything produced an option.

val op [|> : (% "pipe" x)
’a * (’a -> b ) -> b
val op >>= : (% "bind" *)
’a option * (’a -> ’b option) -> ’b option
fun (x : ’a ) I> (f : ’a -> ’b )
: ’b =
f x
fun (x ’a option) >>= (f : ’a -> ’b option)
: ’b option =
case x of
NONE => NONE

| SOME y => f y

Hype for Types

Category Theory (for Programmers)

April 13, 2021

22/31



A New Kind

of Composition

val op >>>

(’a -> b ) » (b -> ’c ) >
(Ca -> ’c )
val op >=>
(’a -> ’b option) * (’b -> ’c option) ->
(’a -> ’c option)
fun (f ’a => b ) >>> (g b -> ¢ )
(’a -> ’c ) =
fn x => g (f x)
fun (£ ’a -> ’b option) >=> (g ’b -> ’c option)
(’a -> ’c option) =
fn x =>
case f x of
NONE => NONE
| SOME y => g ¥y

Hype for Types

Category Theory (for Programmers)

April 13, 2021

23/31



No more plumbing!

>>= : ’a option * (’a -> ’b option) -> ’b option
>=> : (’a -> ’b option) * (’b -> ’c option)
-> (’a -> ’c option)

readLine ()

>>= parselnput

>>= requestData token

>>= (toAvatar >>> SOME) (* wrap via SOME x*)

val showAvatar =
getAvatar >=> savelmage

val readLine : unit -> string option

val parselnput : string -> packet option

val requestData : token -> packet -> userData option
val savelmage : image -> filename option

val getAvatar = fn token =>

Hype for Types Category Theory (for Programmers) April 13, 2021

24 /31



Formalizing Burritos

signature MONAD =
sig
type ’a t
val return : ’a -> ’a t
val >>= : ’a t * (’a -> ’b t) -> ’b t
end

As usual, there are some other invariants - the “monad laws”® - which
make return and >>= behave “in the expected way”.

structure Option : MONAD =

struct
type ’a t = ’a option
val return = SOME
fun x >>= f = case x of NONE => NONE | SOME y
=> f y

end

Shttps://wiki.haskell.org/Monad_laws

April 13,2001 25/31


https://wiki.haskell.org/Monad_laws

Some examples...

Big ldea

Lots of common types ascribe to MONAD.

type ’a t =

For when your functions can produce...

’a option

“failure” via NONE

(’a, string) either | “failure” with an error string

unit -> ’a
’a list
’a * string

state -> state *

Hype for Types

a “lazy” output

multiple results

a log string (always)

>a | an updated state, given a state

Category Theory (for Programmers) April 13, 2021 26 /31



Log Monad

structure LogMonad MONAD =
MkMonad (
type ’a t = ’a * string
fun return (x ’a) ’a t = (x, "")
fun ((x, log) a t) >>= (f ’a => ’b t)
b t =
let
val (y, log’) = f x
in
(y, log log?’)
end
)
Hype for Types Category Theory (for Programmers) April 13, 2021 27/31



What about >=>7

Turns out, we can define it in terms of >>= (and vice versa).

In fact, given return and one of the following three functions, the other
two can be derived:

val >>= : ’a *x (’a -> ’b t) -> ’b t

val >=> : (’a -> ’b t) * (°b -> ’c t) -> (’a -> ’c t)
val join : ’a t t -> ’a t

Theorem

Every MONAD is a MAPPABLE.

Given return and any of the previous three functions, we can implement

val map : (’a -> ’b) -> (’a t -> ’b t)

with the desired properties.

Hype for Types Category Theory (for Programmers) April 13, 2021 28 /31



Aside: Imperative Programming

Monads look like a generalization of imperative programming.

val getAvatar = fn token =>
readLine >>= (fn input =>
parselnput input >>= (fn parsed =>

return (toAvatar data)

requestData token parsed >>= (fn data

=>

)
)
) (* looks like CPS! *)
val getAvatar = fn token =>
do

input <- readLine ()

parsed <- parselnput input

data <- requestData token parsed
return (toAvatar data)

This syntactic sugar isn't present in SML, but it “might as well be". (It's

in Haskell!)
Hype for Types Category Theory (for Programmers)

April 13, 2021

29/31



Conclusion

Hype for Types Category Theory (for Programmers)



Conclusion

o Category theory lets us think abstractly about a variety of
mathematical structures.

@ As programmers/type theorists, we can take advantage of category
theoretic “signatures” to reduce boilerplate code.

@ Most common parameterized types are MAPPABLE. Just like
List .map is handy, so are other map functions!

@ Many parameterized types which are MONADs. We can use this to get
helper functions for free, letting us focus on the “business logic”
rather than peripheral implementation details.

Hype for Types Category Theory (for Programmers) April 13, 2021 31/31



	What is a category?
	MappablesWell, ``functors'', but that's already a thing in SML...
	Monads
	Conclusion

