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Overview

@ Lots of patterns appear in math and programming.
@ Let's try to codify them!

@ We'll end up with some cool abstractions and tricks that make
programming simpler.

Big ldea
Category theory is the study of composition. J
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What is a category?
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Some Algebraic Structures

What do these things have in common?
o Addition on natural numbers
@ Multiplication on natural numbers
@ String concatenation
@ Appending lists

@ Union on sets

Some observations:
@ Binary operations
@ Associative

o Identity element
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Monoids

Definition
A monoid M is the data:
@ type t
o valuez : t
evaluef : t -> t -> t
@ upholds f x z=f z x =x
@ upholds £ x (f y z) =£f (£ x y) z
Ths abstraction is handy! e.g.:
Seq.reduce M.f M.z : t seq -> t
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Another Kind of Structure

What do these have in common?
@ Functions on sets

Monoid homomorphisms

Implications between propositions

°
@ The < relation on natural numbers
°
o (Total) functions in SML

Some observations:
@ “Things"
@ Directed correspondences between the things

> “Reflexive”
» Compositional/ “transitive”
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Categories

Definition
A category C is the data:
@ a collection of objects, Ob(C)
@ a collection of arrows, Arr(C)
e for every arrow, a source x € Ob(C)
o for every arrow, a target y € Ob(C)
e for every object x € Ob(C), an arrow idy : x — x
@ for every arrow u:x — yand v:y — z, an arrow uov :x — z

o foreveryarrow f :w = x, g:x =y, h:y — z,
fo(goh)=(fog)oh

We'll focus on the category of SML types, with total functions as the
arrows.
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The Category of SML Types

bool ¥ int T~

st snd
(_,x) =>x >0 \

not b001< x => if x then 1 elylnt w)E
Bool.toString Int.toString int option
\\\\N l</////Int.fromString
. /
string

By convention, we omit:
o Identity arrows (self-loops at types)

@ Compositions of arrows
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Mappables!

Well, “functors”, but that’s already a thing in SML...
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From Category to Category

What would a transformation from category to category look like?

We must:
@ turn objects into objects

@ turn arrows into arrows

How about:

type ’a map_obj
fun map_arr f

’a list
List.map f
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Visualizing Lists

. List.map f .
t list —— > u list
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Mappables?

Definition?
A mappable M is the data:
@ type ’a t
@ valuemap : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =
sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
end
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Which map?
What if we picked:

type ’a map_obj = ’a list

fun map_arrl f
fn => []

fun map_arr2 f

fn 1 => List.map f (List.rev 1)
fun map_arr3 f =
fn [] => []

| _::xs => List.map f xs

Problems:

map_arr id [1,2,3] a8 [1,2,3]

~

map_arr rev o map_arr tl =map_arr
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Mappables

Definition
A mappable M is the data:
@ type ’a t
@ valuemap : (’a -> ’b) -> ’a t -> ’b t

(*] uph0|ds map id =54 ¢ -> 74 t 1d

@ upholds map f o map g=map (f o g)

In other words:

signature MAPPABLE =
sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
(x invariants: ... %)
end
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Optimization: Loop Fusion!

If we have:

int [n] arr;

for (int i = 0; i < mn; i++)
arr[i] = f(arr[il);

for (int i = 0; i < n; i++)
arr[i] = g(arr[i]);

then it must be equivalent to:?

for (int i = 0; i < mn; i++)
arr[i] = g(f(arr[i]));

2Not just for lists - any data structure with a “sensible” notion of map works!
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Option Map

What does an option look like as a mappable?

structure Option MAPPABLE =
struct
type ’a t = ’a option
val map3 = fn f => fn
NONE => NONE
| SOME x => SOME (f x)
end

Notice: this satisfies the desired identity and composition properties!

3This is built-in to SML as Option.map!
Hype for Types Category Theory (for Programmers) April 13, 2021 16 /31




Some More Example Mappables

Lists
Options
Trees
Streams

Functions int -> ’a

i.e., (almost) anything polymorphic.

Conclusion
It's a useful abstraction. J
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Monads
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Culinary Composition

We're used to a few combinators for composition:

@op [|> : ’a *x (’a -> ’b) -> b
llpipe”
@op >>> : (’a -> ’b) * (b -> ’¢c) -> (’a -> ’c¢)

“forward composition”*

val getAvatar = fn token =>
readLine ()
| > parselnput
|> requestData token
| > toAvatar

val showAvatar =
getAvatar >>> savelmage

Life is good.

*Flipped arguments from op o; arguably, more “natural” /easier to work with.
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Attack of the Real World

Here, we assumed:

val readLine : unit -> string

val parselnput : string -> packet

val requestData : token -> packet -> userData
val toAvatar : userData -> image

val saveImage : image -> filename

However, some of these steps could fail.

(* T type error! *)

val readLine : unit -> string option
val parselnput : string -> packet option
val requestData : token -> packet -> userData option
val savelmage : image -> filename option
val getAvatar = fn token =>
readLine () (*x string option *)

| > parselnput (* string -> packet option *)
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First Attempt: Pain

val getAvatar = fn token =>
case readlLine () of NONE => NONE
| SOME x1 => (
case parselnput x1 of NONE => NONE
| SOME x2 => (
case requestData token x2 of NONE => NONE
| SOME x3 => SOME (toAvatar x3)

val showAvatar =
getAvatar >>> (fn NONE => NONE
| SOME image => savelmage image)

Observation

This is horrible! So much “plumbing” to propagate NONE. Before, the
core logic was clearly present; now, it's obscured.

v
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A New Kind of Composition

Let's reimagine our combinators

as if everything produced an option.

val op [|> : (% "pipe" x)
’a * (’a -> b ) -> b
val op >>= : (% "bind" *)
’a option * (’a -> ’b option) -> ’b option
fun (x : ’a ) I> (f : ’a -> ’b )
: ’b =
f x
fun (x ’a option) >>= (f : ’a -> ’b option)
: ’b option =
case x of
NONE => NONE

| SOME y => f y
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A New Kind

of Composition

val op >>>

(’a -> b ) » (b -> ’c ) >
(Ca -> ’c )
val op >=>
(’a -> ’b option) * (’b -> ’c option) ->
(’a -> ’c option)
fun (f ’a => b ) >>> (g b -> ¢ )
(’a -> ’c ) =
fn x => g (f x)
fun (£ ’a -> ’b option) >=> (g ’b -> ’c option)
(’a -> ’c option) =
fn x =>
case f x of
NONE => NONE
| SOME y => g ¥y

Hype for Types

Category Theory (for Programmers)

April 13, 2021

23/31



No more plumbing!

>>= : ’a option * (’a -> ’b option) -> ’b option
>=> : (’a -> ’b option) * (’b -> ’c option)
-> (’a -> ’c option)

readLine ()

>>= parselnput

>>= requestData token

>>= (toAvatar >>> SOME) (* wrap via SOME x*)

val showAvatar =
getAvatar >=> savelmage

val readLine : unit -> string option

val parselnput : string -> packet option

val requestData : token -> packet -> userData option
val savelmage : image -> filename option

val getAvatar = fn token =>
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Formalizing Burritos

signature MONAD =
sig
type ’a t
val return : ’a -> ’a t
val >>= : ’a t * (’a -> ’b t) -> ’b t
end

As usual, there are some other invariants - the “monad laws”® - which
make return and >>= behave “in the expected way”.

structure Option : MONAD =

struct
type ’a t = ’a option
val return = SOME
fun x >>= f = case x of NONE => NONE | SOME y
=> f y

end

Shttps://wiki.haskell.org/Monad_laws
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Some examples...

Big ldea

Lots of common types ascribe to MONAD.

type ’a t =

For when your functions can produce...

’a option

“failure” via NONE

(’a, string) either | “failure” with an error string

unit -> ’a
’a list
’a * string

state -> state *

Hype for Types

a “lazy” output

multiple results

a log string (always)

>a | an updated state, given a state
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Log Monad

structure LogMonad MONAD =
MkMonad (
type ’a t = ’a * string
fun return (x ’a) ’a t = (x, "")
fun ((x, log) a t) >>= (f ’a => ’b t)
b t =
let
val (y, log’) = f x
in
(y, log log?’)
end
)
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What about >=>7

Turns out, we can define it in terms of >>= (and vice versa).

In fact, given return and one of the following three functions, the other
two can be derived:

val >>= : ’a *x (’a -> ’b t) -> ’b t

val >=> : (’a -> ’b t) * (°b -> ’c t) -> (’a -> ’c t)
val join : ’a t t -> ’a t

Theorem

Every MONAD is a MAPPABLE.

Given return and any of the previous three functions, we can implement

val map : (’a -> ’b) -> (’a t -> ’b t)

with the desired properties.
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Aside: Imperative Programming

Monads look like a generalization of imperative programming.

val getAvatar = fn token =>
readLine >>= (fn input =>
parselnput input >>= (fn parsed =>

return (toAvatar data)

requestData token parsed >>= (fn data

=>

)
)
) (* looks like CPS! *)
val getAvatar = fn token =>
do

input <- readLine ()

parsed <- parselnput input

data <- requestData token parsed
return (toAvatar data)

This syntactic sugar isn't present in SML, but it “might as well be". (It's

in Haskell!)
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Conclusion
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Conclusion

o Category theory lets us think abstractly about a variety of
mathematical structures.

@ As programmers/type theorists, we can take advantage of category
theoretic “signatures” to reduce boilerplate code.

@ Most common parameterized types are MAPPABLE. Just like
List .map is handy, so are other map functions!

@ Many parameterized types which are MONADs. We can use this to get
helper functions for free, letting us focus on the “business logic”
rather than peripheral implementation details.
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