Seven Trees in One

Cameron Wong

98-317 Hype For Types
2021-05-04

A function

```
datatype tree = E | N of tree * tree
val foo : (tree * tree * tree * tree * tree * tree * tree -> tree) =
    fn (a as N_,b,c,d,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (a,b as N_,c,d,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (a,b,c as N_,d,e,f,g) => N(N(NN(N(N(N(g,f),e),d),c),b),a)
        (a,b,c,d as N_,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (E,E,E,E,N(e1,e2),f,g) => N(N(N(N(E,g),f),e1),e2)
        (E,E,E,E,E,f as N_,g) => N(N(N(N(N(f,g),E),E),E),E)
        (E,E,E,E,E,E,N(N(N(N(g1,g2),g3),g4),g5)) => N(N(N(N(N(E,g1),g2),g3),g4),g5)
        (E,E,E,E,E,E,g) => g
```


Notice anything?

What's the length of the left spine in the output?

Notice anything?

What's the length of the left spine in the output?

- ≥ 6 in the first four cases
- 4 in the fifth case
- ≥ 6 in the sixth case (f is non-empty)
- 5 in the seventh case
- ≤ 3 in the last case

Notice anything?

Another note:
In the first four cases, at least one node on the left spine must have a right child, but in the sixth case, that isn't true.

- foo is injective!

Notice anything?

Also, foo is surjective.

Notice anything?

Also, foo is surjective. (prove it for yourself, very long and not very interesting)

Notice anything?

- foo is injective bijective!

So what?

tree $^{7} \simeq$ tree $?$

Who cares?
\mid tree $^{7}|=|$ tree $\mid=$ "countably infinite"

Wait...

```
datatype tree = E N of tree * tree
val foo : (tree * tree * tree * tree * tree * tree * tree -> tree) =
    fn (a as N_,b,c,d,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (a,b as N_,c,d,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (a,b,c as N_,d,e,f,g) => N(N(NN(N(N(N(g,f),e),d),c),b),a)
        (a,b,c,d as N_,e,f,g) => N(N(N(N(N(N(g,f),e),d),c),b),a)
        (E,E,E,E,N(e1,e2),f,g) => N(N(N(N(E,g),f),e1),e2)
        (E,E,E,E,E,f as N_,g) => N(N(N(N(N(f,g),E),E),E),E)
        (E,E,E,E,E,E,N(N(N(N(g1,g2),g3),g4),g5)) => N(N(N(N(N(E,g1),g2),g3),g4),g5)
        (E,E,E,E,E,E,g) => g
```


Wait...

foo isn't recursive!

Wait...

tree ${ }^{7} \simeq$ tree in constant time!

Recall: Algebraic Datatypes

```
datatype tree = E | N of tree * tree
```

Recall: Algebraic Datatypes
$T=1+T^{2}$

Back to middle school

$$
T=\frac{1 \pm \sqrt{-3}}{2} ?
$$

This does give $T^{7}=T \ldots$

Does this mean that $T^{6}=1$?

Whoops

tree $^{6} \simeq$ unit is obviously false, but it follows from $T=\frac{1 \pm \sqrt{-3}}{2}$

Whoops

The type equation $T^{2}-T+1=0$ is not well-formed, because subtraction isn't defined on types!

What we know

- The only meaningful operations on types are,$+ \times$ (and exponentiation)
- For any type equation/isomorphism $A=B$, there is a pattern-matching-only bijection from A to B

Attempt 2

$T=T^{2}+1$

Attempt 2

$$
T=T^{2}+1=T^{3}+T+1
$$

Attempt 2

$$
T=T^{3}+T+1=T^{4}+T^{2}+T+1
$$

Attempt 2

(after iterating this a few times...)
$T=T^{7}+T^{5}+T^{4}+T^{3}+T^{2}+T+1$

Attempt 2

$$
T=T^{7}+T^{5}+T^{4}+T^{3}+T^{2}+T+1
$$

Attempt 2

$$
T=T^{7}+T^{5}+T^{4}+T^{3}+T^{2}+T+1
$$

Attempt 2

$$
T=T^{7}+T^{4}+T^{4}+T^{2}+T+1
$$

Attempt 2

$$
T=T^{7}+T^{4}+T^{4}+T^{2}+T+1=T^{7}+T^{4}+T^{3}+T+1
$$

Attempt 2

$$
T=T^{7}+T^{4}+T
$$

Attempt 2

(with the same trick in reverse, you can reduce back to T^{7})

A formalism

- tree induces the semiring of polynomials $\mathcal{N}[T] /\left(T=1+T^{2}\right)$

Thanks!

