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How many functions of this type?



How many functions of this type?

fn x = (print “hello”; x)



How many functions of this type?

‘a = ‘a

let fun f x = f x 1in f end



How many pure, total functions of this type”’



How many pure, total functions of this type”’

‘a = ‘a —> ‘3



How many pure, total functions of this type”’
‘a list > ‘a list

What do they all have in common?



Claim: all functions of type
‘a list > ‘a list

merely rearrange their input (insensitive to contents).



How many pure, total functions of this type”’
(‘a > ‘b) > ‘a list > ‘b list

What do they all have in common?



Claim: all functions of type
(‘a > ‘b) > ‘a list > ‘b list

are close relatives of map.



Claim: all functions of type
(‘a > ‘b) > ‘a list > ‘b list

are just map composed with a rearranging function.



How many pure, total functions of this type”’

‘a > ‘b



A fun isomorphism

AZVX.(A—-X)— X



A fun isomorphism



A fun isomorphism
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A fun isomorphism
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g=Ah:A) A\ : A) x)




Theorems for free!
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Theorems for free!

Not free as in beer, free as in monads
Parametricity theorem (Reynolds)

Formalizes intuition: ML polymorphic types are contracts



given some *) val r : ‘a list > ‘a list

for all *) val a : s =

t

it is true that *x) (map a) o (r : s list > s list)

is equivalent to *) (r :

t list > t list) o (map a)



(map Char.ord) (rev [#"a
= [99,98,97] : int list
= rev (map Char.ord [#"a"

)
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(map (fn x => x + 1)) (t1 [1, 2, 31)

[3, 4] : int list

tl (map (fn x => x + 1) [1, 2, 3]1)



(map (fn x => x + 1)) (filter (fn x => x mod 2 = 0) [1, 2, 371)
= [3] : int list

filter (fn x = x mod 2 = 0) (map (fn x = x + 1) [1, 2, 31)



(map (fn x => x + 1)) (filter (fn x => x mod 2 = 0) [1, 2, 371)
= [3] : int list
filter (fn x = x mod 2 = 0) (map (fn x = x + 1) [1, 2, 31)

= [2, 4] : int list



(map (fn x => x + 1)) (filter (fn x = x mod 2 = 0) [1, 2, 371)

= [3] : int list

filter (fn x => x mod 2 = 0) (map (fn x = x + 1) [1, 2, 3])

= [2, 4] : int list

filter (fn x = x mod 2 = 0) : int list = int list



Assume a : A - A" and b: B — B’.

head :VX. X* - X
a o heady = heady: o a*

taill :VX. X* = X~

a* o taily = taily o a*

(H#): VX X' =5 X" - X~
a* (zs 44 ys) = (a* zs) Har (a” ys)

concat : VX. X** — X~
a* o concaty = concaty o a**

fst :VX. VY. X xY =5 X
a OfStAB IfStA/B: o} (a X b)

snd :VX. VY. X xY =Y
bosndyp = sndargr o (a x b)

zip VX VY. (X*x Y*) > (X x Y)*
(a x b)* o zipap = ztparp o (a* X b*)

filter : VX. (X — Bool) - X* — X*
a* o filtery (p' o a) = filtery: p' o a*

sort :¥X. (X - X — Bool) > X* —» X~
if forall z,y € A, (z <y)=(az <’ ay) then
a* o sorty (<) = sorta (<')oa*

fold :YX. VY. (X Y —>Y)>Y X" Y
ifforallze A,ye B, b(zdy)=(az)®(by)and b u= v then
bo foldap (EB) u = folda g (®) u' o a*

[ VX X = X
CEOIA:]A/OCE

K: VX VY. X—>Y > X
a ([{AB x y) = K (a 17) (b y)



Suppose that I tell you that I am thinking of a function
m with the type

m:YXVY (X —=>Y)—=> (X"— Y7

You will immediately guess that I am thinking of the
map function, m(f) = f*. Of course, I could be thinking
of a different function, for instance, one that reverses a
list and then applies f* to 1t. But intuitively, you know
that map 1s the only interesting function of this type:
that all others must be rearranging functions composed
with map.

We can formalise this intuition as follows. Let m be
a function with the type above. Then

map(f) =f omua(la) = mpp(Ig)of~

where 4 1s the 1dentity function on A. The function
maa(la) is a rearranging function, as discussed in the
preceding section. Thus, every function m of the above
type can be expressed as a rearranging function com-
posed with map, or equivalently, as map composed with
a rearranging function.

The prootf 1s simple. As we have already seen, the
parametricity condition for m 1s that

iff’o a = bof then mA:B:(f') oa* =b"o mAB(f)

Taking A’ = B’ = B, b = f' = Ig, a = f satisfies the

hypotheses, giving as the conclusion

mpp(Ig) o f* = (Ip)* o map(f)

which gives us the second equality above, since (Ig)* =
Ig+. The first equality may be derived by commuting
the permuting function with map; or may be derived
directly by a different substitution.



Polymorphic Troubles

(op =) : ‘a * ‘a = bool



Polymorphic Troubles

(op =) : ‘a * ‘a = bool
fun f [a, b] = if a = b then [] else [a, b] | f x = x (* oops *)

. ‘a list > ‘a list



Polymorphic Troubles

. ‘‘a list = “‘ag list



Polymorphic Troubles

$ ocaml

OCaml version 4.10.0

(<);;

-+ 'a—=> 'a > bool = <fun>



A fun isomorphism
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f=Xx:A

g=Ah:A) A\ : A) x)




A fun isomorphism

Ifh:VX.(A— X)— X, then
forallb: B— B, f: A— B,
b(h[B]f) = h[B'](bo f)



A fun isomorphism

f=Xz:A) AX) Mk : A= X) k()
h{A|(A(x: A) x)




