Introduction

Welcome to Hype for Types!

- Instructors:
- Brandon Wu (bjwu)
- James Gallicchio (jgallicc)
- Suhas Kotha (suhask)
- Runming Li (runmingl)
- Attendance
- In general, you have to come to lecture to pass
- Let us know if you need to miss a week
- Homework
- Every lecture will have an associated homework
- Graded on effort (not correctness)
- If you spend more than an hour, please stop ${ }^{1}$
${ }^{1}$ Unless you're having fun!

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
- If you don't have this and feel really lost, send us a message on Discord

Motivation

Programming is Hard

- 1 + "hello"
- fun $f x=f x$
- goto not_yet_valid_case;
- malloc(sizeof(int)); return;
- free(A) ; free(A);
- @requires is_sorted(A)
- $A[l e n(A)]$

https://xkcd.com/327/

Types are... hype!

- Rule out a whole class of errors at compile time
- Expressively describe the shape of data
- Could we do more?

Lambda Calculus

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Expressions

We represent our expressions using a grammar：
false
true
if e}\mp@subsup{e}{1}{}\mathrm{ then }\mp@subsup{e}{2}{}\mathrm{ else e}\mp@subsup{e}{3}{
<e},\mp@subsup{e}{2}{},\mp@subsup{e}{2}{}
fst(e)
snd(e)
\lambdax:\tau.e
e

```
```

e $::=x$

```
e \(::=x\)
    〈〉
    〈〉
variable unit
false boolean
true boolean
boolean case analysis
tuple
first tuple element
second tuple element function abstraction（lambda）
function application

\section*{Types}

Similarly, we define our types as follows:
\[
\begin{array}{rll}
\tau \quad::= & \text { unit } \\
& \text { bool } \\
& \tau_{1} \times \tau_{2} \\
& \tau_{1} \rightarrow \tau_{2}
\end{array}
\]

\section*{Question}

How do we check if \(e: \tau\) ?

\section*{Inference Rules}

In logic, we use inference rules to state how facts follow from other facts.


For example:
\[
\frac{\text { you are here you are hyped }}{\text { you are hyped for types }}
\]
\(\overline{\text { functions are values }}\)


\section*{Typing Rules: First Attempt}

Consider the judgement \(e: \tau\) ("e has type \(\tau\) "). Let's try to express some simple typing rules.
\(\overline{\rangle: \text { unit }}\)
false: bool
\(\frac{e_{1}: \tau_{1} \quad e_{2}: \tau_{2}}{\left\langle e_{1}, e_{2}\right\rangle: \tau_{1} \times \tau_{2}}\)
true : bool
\begin{tabular}{l}
\(e_{1}:\) bool \(e_{2}: \tau \quad e_{3}: \tau\) \\
\hline if \(e_{1}\) then \(e_{2}\) else \(e_{3}: \tau\)
\end{tabular}
\[
\frac{e: \tau_{1} \times \tau_{2}}{\mathbf{f s t}(e): \tau_{1}}
\]
\[
\frac{e: \tau_{1} \times \tau_{2}}{\boldsymbol{\operatorname { s n d }}(e): \tau_{2}}
\]

\section*{Question}

How do we write rules for functions?

\section*{Typing Rules: Functions}

Let's give it a shot.
\[
\frac{e_{1}: \tau_{1} \rightarrow \tau_{2} \quad e_{2}: \tau_{1}}{e_{1} e_{2}: \tau_{2}}
\]

Looks good so far...
\[
\frac{e: \tau_{2}(?)}{\lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}}
\]

\section*{Key Idea}

Expressions only have types given a context!

\section*{Contexts}

\section*{Intuition}

If, given \(x: \tau_{1}\), we know \(e: \tau_{2}\), then \(\lambda x: \tau_{1} . e: \tau_{1} \rightarrow \tau_{2}\).
Therefore, we need a context (denoted \(\Gamma\) ) which associates types with variables.
\[
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}}
\]

What types does some variable \(x\) have? It depends on the previous code!
\[
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
\]

\section*{All the rules!}
\(\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}(\mathrm{VAR})\)

\(\overline{\Gamma \vdash \text { false : boole }}\) (FALSE)
\(\overline{\Gamma \vdash \text { true }: \text { boole }}(\) TRUE \() \quad \frac{\Gamma \vdash e_{1}: \text { boot } \quad \Gamma \vdash e_{2}: \tau \quad \Gamma \vdash e_{3}: \tau}{\Gamma \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau}\) (IF)
\[
\begin{array}{cc}
\frac{\Gamma \vdash e_{1}: \tau_{1}}{\Gamma \vdash\left\langle e_{1}, e_{2}\right\rangle: \tau_{1} \times \tau_{2}}(\mathrm{TUP}) & \frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \mathbf{f s t}(e): \tau_{1}}(\mathrm{FST}) \\
\frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \mathbf{s n d}(e): \tau_{2}}(\mathrm{SND}) \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}}(\mathrm{ABS}) \\
\frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}}\left(\mathrm{\Gamma} e_{2}: \tau_{1}\right. \\
(\mathrm{APP})
\end{array}
\]

\section*{Example: what's the type?}

Let's derive that
\(\cdot \vdash(\lambda x:\) unit. \(\langle x\), true \(\rangle)\rangle:\) unit \(\times\) bool
by using the rules.


\section*{Homework Foreshadowing}

That looks like a trace of a typechecking algorithm!

\section*{Get Hype.}

\section*{The Future is Bright}
- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?```

