Introduction

Welcome to Hype for Types!

- Instructors:
 - Brandon Wu (bjwu)
 - James Gallicchio (jgallicc)
 - Suhas Kotha (suhask)
 - Runming Li (runmingl)
- Attendance
 - In general, you have to come to lecture to pass
 - Let us know if you need to miss a week
- Homework
 - Every lecture will have an associated homework
 - Graded on effort (not correctness)
 - If you spend more than an hour, please stop¹

¹Unless you're having fun!

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
 - ▶ If you don't have this and feel really lost, send us a message on Discord

Motivation

Programming is Hard

- 1 + "hello"
- fun f x = f x
- goto not_yet_valid_case;
- malloc(sizeof(int)); return;
- free(A); free(A);
- @requires is_sorted(A)
- A[len(A)]

https://xkcd.com/327/

- Rule out a whole class of errors at compile time
- Expressively describe the shape of data
- Could we do more?

Lambda Calculus

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Expressions

е

We represent our expressions using a grammar:

e ::=	X	variable
	$\langle \rangle$	unit
	false	false boolean
	true	true boolean
	if e_1 then e_2 else e_3	boolean case analysis
	$\langle e_1, e_2 \rangle$	tuple
fst (e)		first tuple element
	snd(e)	second tuple element
	λx : $ au$. e	function abstraction (lambda)
	<i>e</i> ₁ <i>e</i> ₂	function application

Types

Similarly, we define our types as follows:

$$\begin{array}{rrrr} \tau & ::= & \textbf{unit} \\ & \mid & \textbf{bool} \\ & \mid & \tau_1 \times \tau_2 \\ & \mid & \tau_1 \to \tau_2 \end{array}$$

Question

How do we check if $e : \tau$?

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

 $\frac{\text{premise}_1 \quad \text{premise}_2 \quad \dots}{\text{conclusion}}$

For example:

you are here you are hyped you are hyped for types

it's raining x is outside

x is getting wet

 $\frac{n \text{ is a number}}{n+1 \text{ is a number}}$

functions are values

 $\frac{A \text{ ancestor } B \text{ mother } C}{A \text{ ancestor } C}$

 $\frac{f \text{ total } x \text{ valuable}}{f x \text{ valuable}}$

Typing Rules: First Attempt

Consider the judgement $e : \tau$ ("e has type τ "). Let's try to express some simple typing rules.

$\overline{\langle angle : unit}$	false : bool	true : bool	$\frac{e_1: \text{bool}}{\text{if } e_1 \text{ then } e_2: \tau e_3: \tau}$
e_1	: $\tau_1 e_2$: τ_2	$e: au_1 imes au_2$	$e: au_1 imes au_2$
$\langle e_1 \rangle$	$, e_2 \rangle : \tau_1 \times \tau_2$	$\overline{fst(e)}$: $ au_1$	$\overline{snd(e)}$: $ au_2$

Question

How do we write rules for functions?

Typing Rules: Functions

Let's give it a shot.

$$e_1: \tau_1 \rightarrow \tau_2 \quad e_2: \tau_1$$

 $e_1 e_2 : \tau_2$

Looks good so far...

 $\frac{e:\tau_2(?)}{\lambda x:\tau_1.\ e:\tau_1\to\tau_2}$

Key Idea

Expressions only have types given a context!

Contexts

Intuition

If, given
$$x : \tau_1$$
, we know $e : \tau_2$, then $\lambda x : \tau_1$. $e : \tau_1 \rightarrow \tau_2$.

Therefore, we need a context (denoted Γ) which associates types with variables.

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1. \ e : \tau_1 \to \tau_2}$$

What types does some variable x have? It depends on the previous code!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}$$

All the rules!

 $\frac{\mathbf{x}:\tau\in\mathsf{\Gamma}}{\mathsf{\Gamma}\vdash\mathbf{x}\cdot\tau} (\mathrm{VAR})$ $\overline{\Gamma \vdash \langle \rangle : \mathbf{unit}} (\text{UNIT})$ $\overline{\Gamma \vdash \mathsf{false} : \mathsf{bool}}$ (FALSE) $\frac{\Gamma \vdash e_1 : \mathbf{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \mathbf{if} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 : \tau} (IF)$ $\overline{\Gamma \vdash true : bool}$ (TRUE) $\frac{\mathsf{\Gamma} \vdash e_1 : \tau_1 \quad \mathsf{\Gamma} \vdash e_2 : \tau_2}{\mathsf{\Gamma} \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2} (\text{TUP})$ $\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathsf{fst}(e) : \tau_1}$ (FST) $\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathsf{snd}(e) : \tau_2}$ (SND) $\frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash \lambda x: \tau_1. \ e: \tau_1 \to \tau_2}$ (ABS) Γŀ

$$\frac{\vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \; e_2 : \tau_2} \; (\text{APP})$$

Example: what's the type?

Let's derive that

 $\cdot \vdash (\lambda x : \text{unit. } \langle x, \text{true} \rangle) \langle \rangle : \text{unit} \times \text{bool}$

by using the rules.

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Get Hype.

The Future is Bright

- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?