Polymorphism: What's the deal with 'a?

Hype for Types

March 31, 2022

Polymorphism

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice, \Uparrow we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types).

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice, \Uparrow we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types). $i d=\lambda(x: N a t) x$
But this only works on Nats!
id true (* type error! *)

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice, \Uparrow we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types). $i d=\lambda(x: N a t) x$
But this only works on Nats!
id true (* type error! *)
$i d 2=\lambda(x:$ Bool $) x$
This seems really annoying $>$: (

What does SML do?

$$
\begin{aligned}
& \text { val id }=\mathrm{fn}(\mathrm{x}: \quad \mathrm{a})=>\mathrm{x} \\
& \text { val - }=\text { id } 1 \\
& \text { val - }=\text { id true } \\
& \text { val - }=\text { id "nice" } \\
& \text { id : 'a -> 'a }
\end{aligned}
$$

What does SML do?

```
val id = fn (x : 'a) => x
val _ = id 1
val _ = id true
val _ = id "nice"
id : 'a -> 'a
But what is 'a? Is it a type?
```


What does SML do?

```
val id = fn (x : 'a) => x
val _ = id 1
val _ = id true
val _ = id "nice"
id : 'a -> 'a
But what is 'a? Is it a type?
If id 1 type checks then 1 : 'a???
```


Polymorphism

Intuitively, we'd like to interpret 'a -> 'a as "for all 'a, 'a -> 'a" The "for all" is implicit.
This is great for programming, but confusing to formalize.
Let's make it explicit!
' $\mathrm{a}->$ ' $\mathrm{a} \Longrightarrow \forall a . a \rightarrow a$
The ticks are no longer needed, as we've explicitly bound a as a type variable.

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$
How do we use this?

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$
How do we use this?
$(\Lambda(a:$ Type $) \lambda(x: a) x)[N a t] \Longrightarrow \lambda(x: N a t) x$

System F

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

System F

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

$$
e \quad::=\quad x
$$

$$
\tau \quad:=t \quad \text { type variable }
$$

$$
\tau_{1} \rightarrow \tau_{2} \quad \text { function type }
$$

$$
\forall t . \tau \quad \text { polymorphic type }
$$

System F

And some inference rules!

System F

And some inference rules!
$\frac{t \in \Delta}{\Delta \vdash t \text { type }}$
$\frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }}$
$\frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }}$

System F

And some inference rules!

$$
\begin{gathered}
\frac{t \in \Delta}{\Delta \vdash t \text { type }} \frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }} \quad \frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }} \\
\frac{x: \tau \in \Gamma}{\Delta ; \Gamma \vdash x: \tau} \quad \frac{\Delta ; \Gamma, x: \tau \vdash e: \tau^{\prime}}{\Delta ; \Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}} \\
\frac{\Delta, t ; \Gamma \vdash e: \tau}{\Delta ; \Gamma \vdash \Lambda(t: \text { Type }) e: \forall t . \tau} \quad \frac{\Delta ; \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta ; \Gamma \vdash e_{2}: \tau}{\Delta ; \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta ; \Gamma \vdash e: \forall t . \tau \quad \Delta \vdash \tau^{\prime} \text { type }}{\Delta ; \Gamma \vdash e\left[\tau^{\prime}\right]: \tau\left[\tau^{\prime} / t\right]}
\end{gathered}
$$

System F

And some inference rules!

$$
\begin{gathered}
\frac{t \in \Delta}{\Delta \vdash t \text { type }} \quad \frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }} \frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }} \\
\frac{x: \tau \in \Gamma}{\Delta ; \Gamma \vdash x: \tau} \quad \frac{\Delta ; \Gamma, x: \tau \vdash e: \tau^{\prime}}{\Delta ; \Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}} \\
\frac{\Delta, t ; \Gamma \vdash e: \tau}{\Delta ; \Gamma \vdash \Lambda(t: \text { Type }) e: \forall t . \tau} \quad \frac{\Delta ; \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta ; \Gamma \vdash e_{2}: \tau}{\Delta ; \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta ; \Gamma \vdash e: \forall t . \tau \quad \Delta \vdash \tau^{\prime} \text { type }}{\Delta ; \Gamma \vdash e\left[\tau^{\prime}\right]: \tau\left[\tau^{\prime} / t\right]}
\end{gathered}
$$

Question

Do we need anything else? What about product types? Sum types?

Some Fing Functions

$$
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)=
$$

Some Fing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c \cdot(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\Lambda(a b c: \text { Type }) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x
\end{gathered}
$$

Some Fing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\Lambda(a b c: \text { Type }) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x \\
\text { compose }: \forall a b c .(a \rightarrow b) \rightarrow(b \rightarrow c) \rightarrow(a \rightarrow c)=
\end{gathered}
$$

Some Fing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\wedge(a b c: \text { Type }) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x \\
\text { compose : } \forall a b c .(a \rightarrow b) \rightarrow(b \rightarrow c) \rightarrow(a \rightarrow c)= \\
\wedge(a b c: \text { Type }) \lambda(f: a \rightarrow b) \lambda(g: b \rightarrow c) \lambda(x: a) g(f x)
\end{gathered}
$$

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ?
Is 'a -> 'a always really $\forall a . a \rightarrow a$?

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ? Is 'a $->$ 'a always really $\forall a . a \rightarrow a$?
Consider:
fun hmm (id : 'a -> 'a) = (id 1, id true)

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ? Is 'a $->$ 'a always really $\forall a . a \rightarrow a$?
Consider:

$$
\text { fun } h m m(i d: \quad \text { 'a }->\text { 'a) }=(i d \text { 1, id true) }
$$

Type error! In SML, big lambdas can only be present at declarations, not arbitrarily inside expressions.
Our function here is equivalent to:

$$
h m m=\Lambda(a: \text { Type }) \lambda(\text { id }: a \rightarrow a)(\text { id } 1, \text { id true })
$$

Which is not the same as:

$$
h m m=\lambda(i d: \forall a . a \rightarrow a)(i d[i n t] 1, i d[b o o l] \text { true })
$$

Why? Because type inference for System F is undecidable!

For all? Exists

If we can express "for all" as a type, can we express "there exists" as a type?

For all? Exists

If we can express " for all" as a type, can we express "there exists" as a type?
$\forall t . t \rightarrow t$ means "for any type t, if you give me a t, l'll give you a t $\exists t . t \rightarrow t$ means "there is some specific type t, and if you give me a t, I'll give you a $t^{\prime \prime}$

For all? Exists

If we can express " for all" as a type, can we express "there exists" as a type?
$\forall t . t \rightarrow t$ means "for any type t, if you give me a t, l'll give you a t $\exists t . t \rightarrow t$ means "there is some specific type t, and if you give me a t, I'll give you a $t^{\prime \prime}$
Where have you seen the idea of specific, yet unknown type?

For all? Exists

If we can express " for all" as a type, can we express "there exists" as a type?
$\forall t . t \rightarrow t$ means "for any type t, if you give me a t, l'll give you a t $\exists t . t \rightarrow t$ means "there is some specific type t, and if you give me a t, I'll give you a $t^{\prime \prime}$
Where have you seen the idea of specific, yet unknown type?
Modules!

Existentialism

$$
\begin{aligned}
& \text { signature } S= \\
& \text { sig } \\
& \text { type t } \\
& \begin{array}{l}
\text { val } x: \\
\text { val } f: \\
\text { end }
\end{array}
\end{aligned}
$$

is basically equivalent to:

$$
\exists t .\{x: t, f: t \rightarrow t\}
$$

or even more simply:

$$
\exists t . t \times(t \rightarrow t)
$$

Da Rules

$\frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \exists t . \tau \text { type }}$
$\frac{\Delta ; \Gamma \vdash e:[\rho / t] \tau \quad \Delta \vdash \rho \text { type }}{\Delta ; \Gamma \vdash \text { struct type } t=\rho \text { in } e: \exists t . \tau}$

$$
\frac{\Delta ; \Gamma \vdash M: \exists t . \tau \quad \Delta, t ; \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau^{\prime} \text { type }}{\Delta ; \Gamma \vdash \text { open } M \text { as } t, x \text { in } e: \tau^{\prime}}
$$

Practical Uses

Stack $=$

Practical Uses

Stack $=$

$\exists t .\{$ empty : t, push : int $\rightarrow t \rightarrow t$, pop : $t \rightarrow($ int $\times t)$ option $\}$
EvenStack $=$

Practical Uses

Stack $=$

$\exists t .\{$ empty : t, push : int $\rightarrow t \rightarrow t$, pop : $t \rightarrow($ int $\times t)$ option $\}$
EvenStack $=$
$\exists t$. \{empty : t, push : int \rightarrow int $\rightarrow t \rightarrow t$, pop : $t \rightarrow($ int $\times t)$ option $\}$

Practical Uses

ListStack : Stack =

Practical Uses

$$
\begin{gathered}
\text { ListStack : Stack }=\text { struct type } t=\text { int list in } \\
\{\text { empty }=\text { Nil, } \\
\text { push }=\text { Cons, } \\
\text { pop }=\lambda(s: \text { int list }) \text { case } s \text { of } N i l \Rightarrow \text { None } \mid \operatorname{Cons}(x, x s) \Rightarrow \operatorname{Some}(x, x s)\}
\end{gathered}
$$

Practical Uses

mkEvenStack : Stack \rightarrow EvenStack $=$

Practical Uses

$$
\begin{gathered}
\text { mkEvenStack : Stack } \rightarrow \text { EvenStack }= \\
\lambda(S: \text { Stack }) \text { open } S \text { as } t, s \text { in } \\
\text { struct type } t^{\prime}=t \text { in } \\
\{\text { empty }=\text { s.empty, } \\
\text { push }=\lambda(x: \text { int }) \lambda(y: \text { int }) \text { s.push } y \circ \text { s.push } x, \\
\text { pop }=\text { s.pop }\}
\end{gathered}
$$

Function Types? No: Type Functions

In SML I can write

```
type 'a f = 'a * 'a
```

What is f ? Does it have a type?

Function Types? No: Type Functions

In SML I can write

```
type 'a f = 'a * 'a
```

What is f ? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to terms: $\lambda(x$: Nat $) x$

Function Types? No: Type Functions

In SML I can write

```
type 'a f = 'a * 'a
```

What is f ? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to terms: $\lambda(x$: Nat $) x$
In System F we can write functions from types to terms:
$\Lambda(A:$ Type $) \lambda(x: A) x$

Function Types? No: Type Functions

In SML I can write

$$
\text { type 'a } f=\text { 'a * 'a }
$$

What is f ? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to terms: $\lambda(x$: Nat $) x$
In System F we can write functions from types to terms:
$\Lambda(A:$ Type $) \lambda(x: A) x$
f is a function from a type to a type. $\mathrm{f}:$ Type \rightarrow Type.

Function Types? No: Type Functions

In SML I can write
type 'a f = 'a * 'a

What is f ? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to terms: $\lambda(x: N a t) x$
In System F we can write functions from types to terms:
$\Lambda(A:$ Type $) \lambda(x: A) x$
f is a function from a type to a type. $\mathrm{f}:$ Type \rightarrow Type.
In SML we're limited to Type \rightarrow Type, but we could go further.
In System F_{ω}, we can write functions like:
$\lambda(F:$ Type \rightarrow Type $) \lambda(A:$ Type $)(A \times A) \rightarrow F A$

A Curious Observation

Do Λ and \forall seem conceptually similar to any language features we've already seen?

A Curious Observation

Do Λ and \forall seem conceptually similar to any language features we've already seen?
Λ functions much like λ, but instead of taking a term, it takes a type. \forall and \rightarrow seem related in the same sort of way.

$$
\forall t . \tau \equiv(t: \text { Type }) \rightarrow \tau \quad \Lambda(t) e \equiv \lambda(t: \text { Type }) e
$$

A Curious Observation

Do Λ and \forall seem conceptually similar to any language features we've already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
\forall and \rightarrow seem related in the same sort of way.

$$
\forall t . \tau \equiv(t: \text { Type }) \rightarrow \tau \quad \Lambda(t) e \equiv \lambda(t: \text { Type }) e
$$

Do struct type $t=\rho$ in e and \exists remind you of anything?

A Curious Observation

Do Λ and \forall seem conceptually similar to any language features we've already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
\forall and \rightarrow seem related in the same sort of way.

$$
\forall t . \tau \equiv(t: \text { Type }) \rightarrow \tau \quad \Lambda(t) e \equiv \lambda(t: \text { Type }) e
$$

Do struct type $t=\rho$ in e and \exists remind you of anything?
Our module expressions are really just tuples of a type, and a term that uses that type!

A Curious Observation

Do Λ and \forall seem conceptually similar to any language features we've already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
\forall and \rightarrow seem related in the same sort of way.

$$
\forall t . \tau \equiv(t: \text { Type }) \rightarrow \tau \quad \Lambda(t) e \equiv \lambda(t: \text { Type }) e
$$

Do struct type $t=\rho$ in e and \exists remind you of anything?
Our module expressions are really just tuples of a type, and a term that uses that type!

$$
\exists t . \tau \equiv(t: \text { Type }) \times \tau \quad \text { struct type } t=\rho \text { in } e \equiv\langle\rho, e\rangle
$$

This is how we'd express these concepts in a language where we can treat types like terms!

We don't need no type constructors (except \forall and \rightarrow) Can we encode $A \times B$ in System F ?

We don't need no type constructors (except \forall and \rightarrow) Can we encode $A \times B$ in System F? Yes! But How?

We don't need no type constructors (except \forall and \rightarrow)
Can we encode $A \times B$ in System F? Yes! But How? What can you do with a value of type $A \times B$?

We don't need no type constructors (except \forall and \rightarrow)
Can we encode $A \times B$ in System F? Yes! But How?
What can you do with a value of type $A \times B$?
Well, if we have a function that requires a value of type A and a value of type B, then we can provide it arguments.

We don't need no type constructors (except \forall and \rightarrow)
Can we encode $A \times B$ in System F? Yes! But How?
What can you do with a value of type $A \times B$?
Well, if we have a function that requires a value of type A and a value of type B, then we can provide it arguments.

$$
\begin{gathered}
A \times B=\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R \\
\text { pair }: \forall A B \cdot A \rightarrow B \rightarrow \forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R= \\
\Lambda(A B) \lambda(x: A) \lambda(y: B) \wedge(R) \lambda(f: A \rightarrow B \rightarrow R) f x y \\
\text { fst }: \forall A B \cdot(\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R) \rightarrow A= \\
\Lambda(A B) \lambda(p: \forall R \cdot A \rightarrow B \rightarrow R) p[A](\lambda(x: A) \lambda(y: B) x) \\
\text { snd }: \forall A B \cdot(\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R) \rightarrow B= \\
\Lambda(A B) \lambda(p: \forall R \cdot A \rightarrow B \rightarrow R) p[B](\lambda(x: A) \lambda(y: B) y)
\end{gathered}
$$

Sum Types?

What can we do with a value of type $A+B$?

Sum Types?

What can we do with a value of type $A+B$?
If we can a function that takes an A and a function that takes a B, we can definitely provide an argument to one of them.

Sum Types?

What can we do with a value of type $A+B$?
If we can a function that takes an A and a function that takes a B, we can definitely provide an argument to one of them.

$$
\begin{gathered}
A+B=\forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R \\
\text { left }: \forall A B \cdot A \rightarrow \forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { left } x \\
\text { right }: \forall A B \cdot B \rightarrow \forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: B \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { right } x
\end{gathered}
$$

Sum Types?

What can we do with a value of type $A+B$?
If we can a function that takes an A and a function that takes a B, we can definitely provide an argument to one of them.

$$
\begin{gathered}
A+B=\forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R \\
\text { left }: \forall A B \cdot A \rightarrow \forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { left } x \\
\text { right }: \forall A B \cdot B \rightarrow \forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: B \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { right } x
\end{gathered}
$$

What about case?

An encoded value of type $A+B$ is already a case!

