
Introduction

Hype for Types Introduction and Lambda Calculus January 17, 2023 1 / 18



Welcome to Hype for Types!

Instructors:
▶ Runming Li (runmingl)
▶ Isabel Gan (igan)
▶ Thea Brick (tbrick)
▶ Sonya Simkin (ssimkin)

Attendance
▶ In general, you have to come to lecture to pass
▶ Let us know if you need to miss a week

Homework
▶ Every lecture will have an associated homework
▶ Graded on effort (not correctness)
▶ If you spend more than an hour, please stop1

1Unless you’re having fun!
Hype for Types Introduction and Lambda Calculus January 17, 2023 2 / 18



Other Stuff

Please join the Discord and Gradescope if you haven’t

We assume everyone has 150 level knowledge of functional
programming and type systems

▶ If you don’t have this and feel really lost, talk to us after class

Hype for Types Introduction and Lambda Calculus January 17, 2023 3 / 18



Motivation

Hype for Types Introduction and Lambda Calculus January 17, 2023 4 / 18



Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 17, 2023 5 / 18

https://xkcd.com/327/


Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 17, 2023 6 / 18



Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 17, 2023 6 / 18



Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 17, 2023 6 / 18



Lambda Calculus

Hype for Types Introduction and Lambda Calculus January 17, 2023 7 / 18



Building a tiny language

The simply-typed lambda calculus is simple. It only has four features:

Unit (“empty tuples”)

Booleans

Tuples

Functions

Hype for Types Introduction and Lambda Calculus January 17, 2023 8 / 18



Expressions

We represent our expressions using a grammar:

e ::= x variable
| ⟨⟩ unit
| false false boolean
| true true boolean
| if e1 then e2 else e3 boolean case analysis
| ⟨e1, e2⟩ tuple
| fst(e) first tuple element
| snd(e) second tuple element
| λx : τ. e function abstraction (lambda)
| e1 e2 function application

Hype for Types Introduction and Lambda Calculus January 17, 2023 9 / 18



Types

Similarly, we define our types as follows:

τ ::= unit
| bool
| τ1 × τ2
| τ1 → τ2

Question

How do we check if e : τ?

Hype for Types Introduction and Lambda Calculus January 17, 2023 10 / 18



Types

Similarly, we define our types as follows:

τ ::= unit
| bool
| τ1 × τ2
| τ1 → τ2

Question

How do we check if e : τ?

Hype for Types Introduction and Lambda Calculus January 17, 2023 10 / 18



Inference Rules
In logic, we use inference rules to state how facts follow from other facts.

premise1 premise2 . . .

conclusion

For example:

you are here you are hyped

you are hyped for types functions are values

it’s raining x is outside

x is getting wet

Socrates is a man All men are mortal

Socrates is mortal

n is a number

n + 1 is a number

f total x valuable

f x valuable

Hype for Types Introduction and Lambda Calculus January 17, 2023 11 / 18



Inference Rules
In logic, we use inference rules to state how facts follow from other facts.

premise1 premise2 . . .

conclusion

For example:

you are here you are hyped

you are hyped for types functions are values

it’s raining x is outside

x is getting wet

Socrates is a man All men are mortal

Socrates is mortal

n is a number

n + 1 is a number

f total x valuable

f x valuable

Hype for Types Introduction and Lambda Calculus January 17, 2023 11 / 18



Typing Rules: First Attempt

Consider the judgement e : τ (“e has type τ”). Let’s try to express some
simple typing rules.

⟨⟩ : unit false : bool true : bool

e1 : bool e2 : τ e3 : τ

if e1 then e2 else e3 : τ

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 × τ2

e : τ1 × τ2

fst(e) : τ1

e : τ1 × τ2

snd(e) : τ2

Question

How do we write rules for functions?

Hype for Types Introduction and Lambda Calculus January 17, 2023 12 / 18



Typing Rules: First Attempt

Consider the judgement e : τ (“e has type τ”). Let’s try to express some
simple typing rules.

⟨⟩ : unit false : bool true : bool

e1 : bool e2 : τ e3 : τ

if e1 then e2 else e3 : τ

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 × τ2

e : τ1 × τ2

fst(e) : τ1

e : τ1 × τ2

snd(e) : τ2

Question

How do we write rules for functions?

Hype for Types Introduction and Lambda Calculus January 17, 2023 12 / 18



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

λx : τ1. e : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 17, 2023 13 / 18



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

λx : τ1. e : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 17, 2023 13 / 18



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

λx : τ1. e : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 17, 2023 13 / 18



Contexts

Intuition

If, given x : τ1, we know e : τ2, then λx : τ1. e : τ1 → τ2.

Therefore, we need a context (denoted Γ) which associates types with
variables.

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

What types does some variable x have? It depends on the previous code!

x : τ ∈ Γ

Γ ⊢ x : τ

Hype for Types Introduction and Lambda Calculus January 17, 2023 14 / 18



All the rules!

x : τ ∈ Γ

Γ ⊢ x : τ
(var)

Γ ⊢ ⟨⟩ : unit
(unit)

Γ ⊢ false : bool
(false)

Γ ⊢ true : bool
(true)

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
(if)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2
(tup)

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst(e) : τ1
(fst)

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd(e) : τ2
(snd)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2
(abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(app)

Hype for Types Introduction and Lambda Calculus January 17, 2023 15 / 18



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 17, 2023 16 / 18



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 17, 2023 16 / 18



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 17, 2023 16 / 18



Get Hype.

Hype for Types Introduction and Lambda Calculus January 17, 2023 17 / 18



The Future is Bright

How can you use basic algebra to manipulate types?

How do types and programs relate to logical proofs?

How can we automatically fold (and unfold) any recursive type?

How can types allow us to do safe imperative programming?

Can we make it so that programs that typecheck iff they’re correct?

Hype for Types Introduction and Lambda Calculus January 17, 2023 18 / 18


	Introduction
	Motivation
	Lambda Calculus
	Defining the Language
	Type Checking

	Get Hype.

