Category Theory: Foundations

Hype for Types

1 Categories

What is a category?
Definition 1.1 (Category). A category \mathbb{C} consists of:

- A collection $\mathbb{C}_{0}($ or ob $(\mathbb{C}))$ of "objects".
- A collection $\mathbb{C}_{1}($ or $\operatorname{arr}(\mathbb{C}))$ of "arrows" /"morphisms".
such that:
- Every arrow $u \in \mathbb{C}_{1}$ has a "domain"/"source" object and a "codomain"/"target" object. If u has source X and target Y, we write $f: X \rightarrow Y$.
- For every object $X \in \mathbb{C}_{0}$, there exists an identity arrow $\mathrm{id}_{X}: X \rightarrow X$.
- For arrows $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, there exists an arrow $X \rightarrow Z$ which we denote $g \circ f$.
- For all $f: X \rightarrow Y, f \circ \mathrm{id}_{X}=f=\mathrm{id}_{Y} \circ f$.
- For all $f: W \rightarrow X, g: X \rightarrow Y, h: Y \rightarrow Z,(h \circ g) \circ f=h \circ(g \circ f)$.

Example 1.1 (Preorder Categories). For any set S with a preorder \leq, we can consider a category where the objects are elements of S and there is a single morphism $\star_{x, y}: x \rightarrow y$ if $x \leq y$, for $x, y \in S$.

- Notice that every object x has an identity arrow $\mathrm{id}_{x}=\star_{x, x}: x \rightarrow x$, by reflexivity.
- Also, if $\star_{x, y}: x \rightarrow y$ (i.e., $x \leq y$) and $\star_{y, z}: y \rightarrow z$ (i.e., $y \leq z$), then we have an arrow $\star_{x, z}: x \rightarrow z$ (i.e., $x \leq z$) by transitivity.

There are many concrete examples:

- Consider \mathbb{N} with the standard ordering; call this category (\mathbb{N}, \leq).

We omit identity arrows for brevity.

- Similarly, consider $\mathbb{R}_{\geq 0}$ (the non-negative real numbers) with the standard ordering; call this category $\left(\mathbb{R}_{\geq 0}, \leq\right)$.
- Consider \mathbb{N} with the ordering $a \leq b$ iff a is a multiple of b; call this category Multiple. This is reflexive (every a is a multiple of itself) and transitive (if a is a multiple of b and b is a multiple of c, then a is
a multiple of c). Notice that every number is a multiple of 1 and 0 is a multiple of every number.

Example 1.2 (The Category Set). The category Set has objects being sets and arrows being functions. Identity arrows are the identity functions, and composition is function composition.

Example 1.3 (The Category SML). The category SML has objects being SML types and arrows being (total) functions. Identity arrows are the identity functions $f n(x: t)=>x$, and composition is function composition via o.
In the following diagram, many objects arrows are omitted - there are infinitely many!

Example 1.4 (The Category CLogic). The category CLogic has objects being propositions in constructive logic and arrows being present if an implication is true.
Definition 1.2 (Isomorphism). Let \mathbb{C} be a category.
If X_{1} and X_{2} are objects and $f_{1}: X_{1} \rightarrow X_{2}$ and $f_{2}: X_{2} \rightarrow X_{1}$ are arrows with $f_{2} \circ f_{1}=$ id $_{X_{1}}$ and $f_{1} \circ f_{2}=\mathrm{id}_{X_{2}}$, then we say that X_{1} and X_{2} are isomorphic objects.

2 Terminal and Initial Objects

Some categories have objects which are particularly "special" - we'll consider two special kinds of objects.

2.1 Terminal Object

Definition 2.1 (Terminal Object). Let \mathbb{C} be a category. A terminal object in \mathbb{C} is an object T which satisfies the following property:
for all objects T^{\prime},
there exists a unique arrow $h: T^{\prime} \rightarrow T$.
Pictorally:

Theorem 2.1 (Uniqueness of Terminal Object). Let \mathbb{C} be a category. If T and T^{\prime} are both terminal objects, then T and T^{\prime} are isomorphic.
So, it is reasonable to talk about the terminal object, since it is unique up to isomorphism.
Example 2.1. Recall the category (\mathbb{N}, \leq) from Example 1.1. There is no terminal object. Suppose n were the terminal object: then, it must be the case that for all $m, m \leq n$, but there is no such number n.

Example 2.2. Recall the category Multiple from Example 1.1. Here, 1 is the terminal object, since for all other objects n, there exists an arrow $n \rightarrow 1$ (since every number is a multiple of 1). Since there is at most one arrow between any two objects in Multiple, this arrow is unique.

Example 2.3. Recall the category Set from Example 1.2. Here, $\{42\}$ is the terminal object, since for all other objects S, there exists a unique arrow $S \rightarrow\{42\}$, the function mapping all inputs to 42 .
There are other terminal objects, like $\{43\},\{a\}$, and $\{\}\}$, but these are isomorphic by Theorem 2.1.
Example 2.4. Recall the category SML from Example 1.3 Here, unit is the terminal object, since for all other objects t, there exists a unique arrow $t \rightarrow$ unit, the function mapping all inputs to ().
There are other terminal objects, like unit $*$ unit, void + unit, and datatype foo $=$ Foo, but these are isomorphic by Theorem 2.1.

Example 2.5. Recall the category CLogic from Example 1.4. Here, \top (the always-true proposition) is the terminal object, since for all other objects φ, there exists a unique arrow $\varphi \Longrightarrow \top$, since every proposition φ implies trivial truth.

Remark 2.6. Notice that terminal objects store only "trivial" data. Thus, we often call the terminal object of a category 1 or $1_{\mathbb{C}}$.

2.2 Initial Object

Definition 2.2 (Initial Object). Let \mathbb{C} be a category. A initial object in \mathbb{C} is an object I which satisfies the following property:
for all objects I^{\prime},
there exists a unique arrow $h: I \rightarrow I^{\prime}$.
Pictorally:

Theorem 2.2 (Uniqueness of Initial Object). Let \mathbb{C} be a category. If I and I^{\prime} are both initial objects, then I and I^{\prime} are isomorphic.

So, it is reasonable to talk about the initial object, since it is unique up to isomorphism.
Example 2.7. Recall the category (\mathbb{N}, \leq) from Example 1.1. The initial object is 0 , since for all n, we have an arrow $0 \rightarrow n$ since $0 \leq n$. Since there is at most one arrow between two numbers, the arrow is unique.

Example 2.8. Recall the category Multiple from Example 1.1. The initial object is 0 , since for all n, we have an arrow $0 \rightarrow n$ since 0 is a multiple of n. Since there is at most one arrow between two numbers, the arrow is unique.

Example 2.9. Recall the category Set from Example 1.2. Here, \varnothing is the initial object, since for all other objects S, there exists a unique arrow $\varnothing \rightarrow S{ }^{1}$
Example 2.10. Recall the category SML from Example 1.3 . Here, void is the initial object, since for all other objects t, there exists a unique arrow void $->\mathrm{t}$.

Example 2.11. Recall the category CLogic from Example 1.4. Here, \perp (the always-false proposition) is the initial object, since for all other objects φ, there exists a unique arrow $\perp \Longrightarrow \varphi$, since falsity implies any proposition φ.

3 Products and Coproducts (Sums)

Now, let's consider how objects interact.

3.1 Product

Definition 3.1 (Product). Let \mathbb{C} be a category, and let A_{1}, A_{2} be objects in \mathbb{C}. The product of A_{1} and A_{2} is some object P with has arrows $p_{1}: P \rightarrow A_{1}, p_{2}: P \rightarrow A_{2}$ which satisfy the following property:
for all objects P^{\prime} with arrows $p_{1}^{\prime}: P^{\prime} \rightarrow A_{1}, p_{2}^{\prime}: P^{\prime} \rightarrow A_{2}$,
there exists a unique arrow $h: P^{\prime} \rightarrow P$ such that $p_{1}^{\prime}=p_{1} \circ h$ and $p_{2}^{\prime}=p_{2} \circ h$.
Pictorally:

Theorem 3.1 (Uniqueness of Products). Let \mathbb{C} be a category, and let A_{1}, A_{2} be objects in \mathbb{C}. If P and P^{\prime} are both products of A_{1} and A_{2}, then P and P^{\prime} are isomorphic.

So, it is reasonable to talk about the product of A_{1} and A_{2}.
Example 3.1. Recall the category (\mathbb{N}, \leq) from Example 1.1, and consider objects n_{1}, n_{2}. The product of n_{1} and n_{2} in this category would be some object m such that $m \leq n_{1}$ and $m \leq n_{2}$, with:
for all m^{\prime} with $m^{\prime} \leq n_{1}$ and $m^{\prime} \leq n_{2}$, then $m^{\prime} \leq m$
In other words, m must be the largest number which is less than or equal to n_{1} and n_{2}. So, m must be $\min \left(n_{1}, n_{2}\right)$.

Example 3.2. Recall the category Multiple from Example 1.1, and consider objects n_{1}, n_{2}. The product of n_{1} and n_{2} in this category would be some object m such that m is a multiple of n_{1} and n_{2}, with:
for all m^{\prime} with m^{\prime} being a multiple of n_{1} and n_{2}, m^{\prime} is a multiple of m

[^0]In other words, m must be the smallest number which is a multiple of n_{1} and n_{2}. So, m must be $\operatorname{lcm}\left(n_{1}, n_{2}\right)$.
Example 3.3. Recall the category Set from Example 1.2, and consider objects A, B. The product of A and B in this category would be some object P with arrows $p_{A}: P \rightarrow A$ and $p_{B}: P \rightarrow B$, with:
for all P^{\prime} with arrows $p_{A}^{\prime}: P^{\prime} \rightarrow A$ and $p_{B}^{\prime}: P^{\prime} \rightarrow B$, there exists a unique arrow $h: P^{\prime} \rightarrow P$ such that $p_{A}^{\prime}=p_{A} \circ h$ and $p_{B}^{\prime}=p_{B} \circ h$.
Consider $P=A \times B$, the Cartesian product of our sets A and B, with $p_{A}=(a, b) \mapsto a$ and $p_{B}=(a, b) \mapsto b$. Then, given an arbitrary $P^{\prime}, p_{A}^{\prime}, p_{B}^{\prime}$, the unique arrow $h: P^{\prime} \rightarrow P$ is $x \mapsto\left(p_{A}^{\prime}(x), p_{B}^{\prime}(x)\right)$.

Example 3.4. Recall the category SML from Example 1.3 , and consider types a, b. The product of a and b in this category would be some object p with arrows $\mathrm{pa}: ~ \mathrm{p} \rightarrow \mathrm{a}$ and $\mathrm{pb}: \mathrm{p} \rightarrow \mathrm{b}$, with:
for all p^{\prime} with arrows pa' : $p^{\prime} \rightarrow$ a and $p b^{\prime}: p^{\prime} \rightarrow b$, there exists a unique arrow h : $p^{\prime}->p$ such that $p a \prime=p a \circ h$ and $p b^{\prime}=p b \circ h$.
Consider $\mathrm{p}=\mathrm{a} * \mathrm{~b}$, the tuple/product type of a and b , with $\mathrm{pa}=\mathrm{fst}=\mathrm{fn}(\mathrm{a}, \mathrm{b})=\mathrm{a}$ and $\mathrm{pb}=$ snd $=f n(a, b)=>b$. Then, given an arbitrary $p^{\prime}, p a \prime, p b$, the unique arrow $h: p \prime \rightarrow p$ is $f n x=>$ (pa' $x, p b$ ' x).
Remark 3.5. Notice that not only is int $*$ string a product of int and string, but in fact so are string * int, string * int * unit, and (string * unit) + void. This is okay, though, since products are unique up to isomorphisms, as described in Theorem 3.1.

Example 3.6. Recall the category CLogic from Example 1.4. We claim that the product of two propositions φ_{1} and φ_{2} will be $\varphi_{1} \wedge \varphi_{2}$; the justification is left as an exercise to the reader.

3.2 Coproducts (Sums)

We can dualize the definition of products to get coproducts, or sums.
Definition 3.2 (Coproduct). Let \mathbb{C} be a category, and let A_{1}, A_{2} be objects in \mathbb{C}. The coproduct (or sum) of A_{1} and A_{2} is some object S with has arrows $i_{1}: A_{1} \rightarrow S, i_{2}: A_{2} \rightarrow S$ which satisfy the following property:
for all objects S^{\prime} with arrows $i_{1}^{\prime}: A_{1} \rightarrow S, i_{2}^{\prime}: A_{2} \rightarrow S$,
there exists a unique arrow $h: S \rightarrow S^{\prime}$ such that $i_{1}^{\prime}=i_{1} \circ h$ and $i_{2}^{\prime}=i_{2} \circ h$.
Pictorally:

Theorem 3.2 (Uniqueness of Coproducts). Let \mathbb{C} be a category, and let A_{1}, A_{2} be objects in \mathbb{C}. If S and S^{\prime} are both coproducts of A_{1} and A_{2}, then S and S^{\prime} are isomorphic.

So, it is reasonable to talk about the coproduct of A_{1} and A_{2}.
Example 3.7. Recall the category (\mathbb{N}, \leq) from Example 1.1, and consider objects n_{1}, n_{2}. The coproduct of n_{1} and n_{2} in this category would be some object m such that $n_{1} \leq m$ and $n_{2} \leq m$, with:
for all m^{\prime} with $n_{1} \leq m^{\prime}$ and $n_{2} \leq m^{\prime}$, then $m \leq m^{\prime}$
In other words, m must be the smallest number which is greater than or equal to n_{1} and n_{2}. So, m must be $\max \left(n_{1}, n_{2}\right)$.

Example 3.8. Recall the category Multiple from Example 1.1, and consider objects n_{1}, n_{2}. The coproduct of n_{1} and n_{2} in this category would be some object m such that n_{1} and n_{2} are multiples of m, with:
for all m^{\prime} with n_{1} and n_{2} being multiples of m^{\prime}, m is a multiple of m^{\prime}
In other words, m must be the largest number which n_{1} and n_{2} are both multiples of. So, m must be $\operatorname{gcd}\left(n_{1}, n_{2}\right)$.

Example 3.9. Recall the category Set from Example 1.2, and consider objects A, B. We claim that $A \uplus B$, the disjoint union of A and B, is the coproduct of A and $B \|^{2}$ The justification is left as an exercise to the reader.

Example 3.10. Recall the category SML from Example 1.3, and consider types a, b. The coproduct of a and b in this category would be some object s with arrows ia : a $\rightarrow \mathrm{s}$ and $\mathrm{ib}: \mathrm{b} \rightarrow \mathrm{s}$, with:
for all s^{\prime} with arrows ia' : a $\rightarrow s^{\prime}$ and $i b$, $b>s^{\prime}$, there exists a unique arrow h :
s -> s^{\prime} such that ia' = ia $\circ \mathrm{h}$ and $i b^{\prime}=i b \circ \mathrm{~h}$.
Consider $\mathrm{s}=\mathrm{a}+\mathrm{b}=(\mathrm{a}, \mathrm{b})$ either, the sum type of a and b , with ia $=$ Left and $\mathrm{ib}=$ Right. Then, given an arbitrary s^{\prime}, ia', ib', the unique arrow $h: s \rightarrow s^{\prime}$ is fn Left $a=>$ ia' $a \mid R i g h t ~ b=>$ ib' b.

Example 3.11. Recall the category CLogic from Example 1.4. We claim that the coproduct of two propositions φ_{1} and φ_{2} will be $\varphi_{1} \vee \varphi_{2}$; the justification is left as an exercise to the reader.

4 Functors

We've considered some examples of categories and considered interesting examples of objects in a category. However, we may consider what it would mean to move between categories. For this purpose, we'll use functors.

Definition 4.1 (Functor). A functor $F: \mathbb{C} \rightarrow \mathbb{D}$ consists of:

- a map $F_{0}: \mathbb{C}_{0} \rightarrow \mathbb{D}_{0}$
- a map $F_{1}: \mathbb{C}_{1} \rightarrow \mathbb{D}_{1}$
such that:
- the source and target of arrows are preserved; if $f: X \rightarrow Y$ is an arrow in \mathbb{C}, then $F_{1}(f): F_{0}(X) \rightarrow$ $F_{0}(Y)$ in \mathbb{D}.
- for every object $X \in \mathbb{C}_{0}, F_{1}\left(\operatorname{id}_{X}\right)=\operatorname{id}_{F_{0}(X)}$
- for arrows $f: X \rightarrow Y$ and $g: Y \rightarrow Z, F_{1}(g \circ f)=F_{1}(g) \circ F_{1}(f)$

Notice that the conditions enforce that F_{0} and F_{1} preserve the structure of a category, as given in Definition 1.1
Pictorally, using an image from Bartosz Milewski

[^1]

Note that the image overloads F to refer to both F_{0} and F_{1}.
Example 4.1 (Doubling Functor on $\mathbb{N})$. We can define a functor $F:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq)$ as follows:

$$
\begin{aligned}
F_{0}(x) & =2 x \\
F_{1}\left(\star_{x, y}\right) & =\star_{2 x, 2 y}
\end{aligned}
$$

The map F_{1} is well defined because if $x \leq y$, then $2 x \leq 2 y$.
Since there is at most one arrow per pair of objects (namely, \star), the functor laws are trivially satisfied.
Example 4.2 (Floor Functor). We can define a functor $F:\left(\mathbb{R}_{\geq 0}, \leq\right) \rightarrow(\mathbb{N}, \leq)$ as follows:

$$
\begin{aligned}
F_{0}(x) & =\lfloor x / 2\rfloor \\
F_{1}\left(\star_{x, y}\right) & =\star\lfloor x / 2\rfloor,\lfloor y / 2\rfloor
\end{aligned}
$$

The map F_{1} is well defined because if $x \leq y$, then $\lfloor x / 2\rfloor \leq\lfloor y / 2\rfloor$.
Since there is at most one arrow per pair of objects (namely, \star), the functor laws are trivially satisfied.
Remark 4.3. Any monotone function between posets induces a functor, where " f is monotone" is defined as " $x \leq y$ implies $f(x) \leq f(y)$ ".
Example 4.4 (List Functor). We can define a functor List : SML $\rightarrow \mathbf{S M L}$ as follows:

$$
\begin{aligned}
& F_{0}(\mathrm{t})=\mathrm{t} \text { list } \\
& F_{1}(\mathrm{f})=\text { List.map } \mathrm{f}
\end{aligned}
$$

Observe that the functor laws are satisfied:

$$
\begin{aligned}
\text { List.map Fn.id } & =\text { Fn.id } \\
\text { List.map }(\mathrm{g} \circ \mathrm{f}) & =\text { List.map } \mathrm{g} \circ \text { List.map } \mathrm{f}
\end{aligned}
$$

Remark 4.5. Many common types form functors: 'a * 'a, 'a option, 'a tree, 'a shrub, 'a stream, int -> 'a, and so on.

Remark 4.6. Not all polymorphic types form functors: consider 'a $t=$ 'a $->$ int, and try to write map : ('a -> 'b) -> 'a t -> 'b t.

4.1 Connection to SML

Restricting our attention to category SML, we can define a signature which describes functors SML \rightarrow SML. So as not to confuse ourself with the word functor used in the SML module system, we use the word MAPPABLE.

```
signature MAPPABLE =
    sig
        type 'a t
        val map : ('a -> 'b) -> 'a t -> 'b t
        (* Invariants (functor laws):
            map id = id
            map (g o f) = map g o map f
        *)
    end
```

Of course, we cannot enforce the functor laws via SML types, so we include them as commented "invariants".
Defining a functor now involves implementing a structure ascribing to MAPPABLE:

```
structure ListMappable : MAPPABLE =
    struct
        type 'a t = 'a list
        val map = List.map
    end
```

In fact, many category theoretic ideas will be useful abstractions in functional programming!

[^0]: ${ }^{1}$ This may feel non-obvious! For example, let $S=\mathbb{N}$; then, wouldn't $f=x \mapsto 42$ and $g=x \mapsto 43$ be different arrows? In fact, they are the same function, since "for all $x \in \varnothing, f(x)=g(x)$ " is true (vacuously; there are no such $x \in \varnothing$).

[^1]: ${ }^{2}$ Consider: which condition would $A \cup B$ violate?

