Dependent Types

Hype for Types

April 4, 2023

Safe Printing

Detypify

Consider these well typed expressions:

```
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32
```

What is the type of sprintf?

Detypify

Consider these well typed expressions:

```
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32
```

What is the type of sprintf? Well... it depends.

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!
(* sprintf s : formatType s *)

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!

```
(* sprintf s : formatType s *)
```

fun formatType (s : char list) : type =
case s of
[] $\quad>$ char list
| (\%' :: 'd' :: cs) => (int -> formatType cs)
| (\%' :: 's' :: cs) => (string -> formatType cs)
| (_ :: cs) $\quad=>$ formatType cs

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!

```
(* sprintf s : formatType s *)
```

fun formatType (s : char list) : type =
case s of
[] $\quad=$ char list
| (\%' :: 'd' :: cs) => (int -> formatType cs)
($\%$, :: 's' :: cs) => (string -> formatType cs)
(_ :: cs) => formatType cs
(* formatType "\%d and \%s" = int -> string -> char list *)
(* sprintf "\%d and \%s" : int -> string -> char list *)

Quantification

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Quantification

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we introduced universal quantification over types: \forall A.A $->$ A.

Quantification

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we introduced universal quantification over types: \forall A.A $->$ A.

What if we had universal quantification over values?

Quantification

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we introduced universal quantification over types: \forall A.A $->$ A.

What if we had universal quantification over values?
sprintf : (s : char list) -> formatType s

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$
(x: \tau) \rightarrow A \equiv \forall x: \tau . A
$$

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$
(x: \tau) \rightarrow A \equiv \forall x: \tau . A
$$

This type is sometimes also written as:
(1) $\forall(x: \tau) \rightarrow A$
(2) $\forall x: t . A$
(3) $\Pi_{x: \tau} A$

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$
(x: \tau) \rightarrow A \equiv \forall x: \tau . A
$$

This type is sometimes also written as:
(1) $\forall(x: \tau) \rightarrow A$
(2) $\forall x: t . A$
(3) $\Pi_{x: \tau} A$

Question:

Seems like we now have two arrow types:
(1) Normal: $A \rightarrow B$.
(2) Dependent: $(x: A) \rightarrow B$

Do we need both?

Question:

Seems like we now have two arrow types:
(1) Normal: $A \rightarrow B$.
(2) Dependent: $(x: A) \rightarrow B$

Do we need both?

Question:

Seems like we now have two arrow types:
(1) Normal: $A \rightarrow B$.
(2) Dependent: $(x: A) \rightarrow B$

Do we need both? Nope!

$$
A \rightarrow B \equiv(-: A) \rightarrow B
$$

Some Rules

$$
\frac{\Gamma, x: \tau \vdash e: A \quad \Gamma, x: \tau \vdash A: \text { Type }}{\Gamma \vdash \lambda(x: \tau) e:(x: \tau) \rightarrow A} \quad \frac{\Gamma \vdash e_{1}:(x: \tau) \rightarrow A \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1} e_{2}:\left[e_{2} / x\right] A}
$$

Note on Notation

In SML we write type contructors on the right:

$$
\text { val cool : int list }=[1,2,3,4]
$$

${ }^{1}$ Readers may note the parallels to another CS course mantra

Note on Notation

In SML we write type contructors on the right:

$$
\text { val cool : int list }=[1,2,3,4]
$$

But now we have functions in our types, and we apply functions on the left! So let's just write everything on the left. While we are at it, lets make values of type Type capital, and their values lowercase:

$$
\begin{aligned}
\text { val cool }: & \text { List Int }=[1,2,3,4] \\
\text { val } a & : A=(* \text { omitted } *)
\end{aligned}
$$

${ }^{1}$ Readers may note the parallels to another CS course mantra

Note on Notation

In SML we write type contructors on the right:

$$
\text { val cool : int list }=[1,2,3,4]
$$

But now we have functions in our types, and we apply functions on the left! So let's just write everything on the left. While we are at it, lets make values of type Type capital, and their values lowercase:

$$
\begin{aligned}
\text { val cool } & : \text { List Int }=[1,2,3,4] \\
\text { val } a & : A=(* \text { omitted } *)
\end{aligned}
$$

Question

What is the type of List?
${ }^{1}$ Readers may note the parallels to another CS course mantra

Note on Notation

In SML we write type contructors on the right:

$$
\text { val cool : int list }=[1,2,3,4]
$$

But now we have functions in our types, and we apply functions on the left! So let's just write everything on the left. While we are at it, lets make values of type Type capital, and their values lowercase:

$$
\begin{aligned}
\text { val cool }: & \text { List Int }=[1,2,3,4] \\
\text { val } \mathrm{a} & : \mathrm{A}=(* \text { omitted } *)
\end{aligned}
$$

Question

What is the type of List?
List : Type -> Type

List is a function over types!
Types are values ${ }^{1}$

[^0]
Vectors Again

If we can write functions from values to types, can we define new type constructors which depend on values?

Vectors Again

If we can write functions from values to types, can we define new type constructors which depend on values?

```
inductive Vec : Type }->\mathrm{ Nat }->\mathrm{ Type
| nil : (A : Type) }->\mathrm{ Vec A 0
| cons : (A : Type) }->\mathrm{ (n : Nat) }
                        A }->\mathrm{ Vec A n }->\mathrm{ Vec A (n+1)
def xs : Vec String 3 :=
    cons String 2 "hype" (
        cons String 1 (toString 4) (
            cons String O "types" (nil String)
        )
    )
```


Vectors Again

```
inductive Vec : Type }->\mathrm{ Nat }->\mathrm{ Type
| nil : (A : Type) }->\mathrm{ Vec A 0
| cons : (A : Type) }->\mathrm{ (n : Nat) }
                        A }->\mathrm{ Vec A n }->\mathrm{ Vec A (n+1)
def two := 1 + 0 + 1
def xs : Vec String (6 / two) :=
    cons String two "hype" (
        cons String 1 (toString 4) (
            cons String 0 "types" (nil String)
        )
    )
```


Vectors are actually usable now!

```
val append : (A : Type) -> (n m : Nat) ->
    Vec A n ->
    Vec A m ->
    Vec A (n + m)
val repeat : (A : Type) -> (n : Nat) ->
    A ->
    Vec A n
val filter : (A : Type) -> (n : Nat) ->
    (A -> bool) ->
    Vec A n ->
    Vec A ?? (* What should go here? *)
```


Vectors are actually usable now!

$$
\begin{aligned}
& \text { val append : (A : Type) -> (n m : Nat) -> } \\
& \text { Vec A n -> } \\
& \text { Vec A m -> } \\
& \text { Vec A (} \mathrm{n}+\mathrm{m} \text {) } \\
& \text { val repeat : (A : Type) -> (n : Nat) -> } \\
& \text { A -> } \\
& \text { Vec A n } \\
& \text { val filter : (A : Type) -> (n : Nat) -> } \\
& \text { (A -> bool) -> } \\
& \text { Vec A n -> } \\
& \text { Vec A ?? (* What should go here? *) }
\end{aligned}
$$

Ponder

How do we describe the return value of filter?

Existential Crisis

For filter, we need to return the vector's length, in addition to the vector itself:

$$
\begin{aligned}
\text { val filter }: & (A \quad: \text { Type })->(n: N a t) ~-> \\
& (A->\text { bool) }-> \\
& \text { Vec A n }-> \\
& \text { Nat } \times \text { Vec A ?? }
\end{aligned}
$$

Existential Crisis

For filter, we need to return the vector's length, in addition to the vector itself:

$$
\begin{aligned}
\text { val filter }: & (A \quad: \text { Type })->(n: N a t) ~-> \\
& (A->\text { bool) }-> \\
& \text { Vec A n }-> \\
& \text { Nat } \times \text { Vec A ?? }
\end{aligned}
$$

We want to refer to the left value of a tuple, in the TYPE on the right.
Intuition: existential quantification!
There exists some n : Nat, such that we return Vec A n .
(We're constructivists, so exists means I actually give you the value)

Duality

$$
(x: \tau) \times A \equiv \exists x: \tau . A
$$

This type can also be written:
(1) $\{x: \tau \mid A\}$
(2) $\Sigma_{x: \tau} A$

As before, $A \times B \equiv(-: A) \times B$

$$
\begin{aligned}
\text { val filter : } & (\mathrm{A}: \text { Type) -> (n : Nat) -> } \\
& (\mathrm{A}->\text { bool) -> } \\
& \text { Vec A n -> } \\
& (\mathrm{m}: \text { Nat) } \times \text { Vec A m }
\end{aligned}
$$

More Rules

$$
\begin{array}{ll}
\frac{\Gamma \vdash e_{1}: \tau}{} \quad \Gamma \vdash e_{2}:\left[e_{1} / x\right] A & \Gamma, x: \tau \vdash A: \text { Type } \\
\frac{\Gamma \vdash e\left(e_{1}, e_{2}\right):(x: \tau) \times A}{\Gamma \vdash \pi_{1} e: \tau} & \frac{\Gamma \vdash e:(x: \tau) \times A}{\Gamma \vdash \pi_{2} e:\left[\pi_{1} e / x\right] A}
\end{array}
$$

Ok, so what?

Specifications are actually pretty nice

Discussion

Do you actually read function contracts/specifications in $122 / 150$?

Specifications are actually pretty nice

Discussion

Do you actually read function contracts/specifications in 122/150?

```
(* REQUIRES : input sequence is sorted *)
val search : int -> int seq -> int option
> search 3 [5,4,3] ==> NONE
(* "search is broken!" *)
(* piazza post ensues *)
```


Compile-time Contracts

The 122 solution:

```
int search (int target, int[] arr)
//@requires is_sorted(arr)
{
}
```

Nice, but only works at runtime.

Compile-time Contracts

The 122 solution:

```
int search (int target, int[] arr)
//@requires is_sorted(arr)
{
}
```

Nice, but only works at runtime.
What if passing search a non-sorted list was a type error?

A simpler example

(* REQUIRES : second argument is greater than zero *) val div : Nat -> Nat -> Nat

Comment contracts aren't good enough. I don't read comments!

A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat
Comment contracts aren't good enough. I don't read comments!
val div : Nat -> Nat -> Option Nat
Incurs runtime cost to check for zero, and you still have to fail if it happens.

A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat
Comment contracts aren't good enough. I don't read comments!
val div : Nat -> Nat -> Option Nat
Incurs runtime cost to check for zero, and you still have to fail if it happens.
val div : Nat $->(\mathrm{n}:$ Nat) $\times(1 \leq n)->$ Nat
Dividing by zero is impossible! And we incur no runtime cost to prevent it.

A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat
Comment contracts aren't good enough. I don't read comments!
val div : Nat -> Nat -> Option Nat
Incurs runtime cost to check for zero, and you still have to fail if it happens.
val div : Nat -> (n : Nat) $\times(1 \leq n)$-> Nat
Dividing by zero is impossible! And we incur no runtime cost to prevent it. What does a value of type $(n: N a t) \times(1 \leq n)$ look like?

$$
(3, \text { conceptsHW1.pdf) }:(n: N a t) \times(1 \leq n)
$$

Question:

What goes in the PDF?

15-151 Refresher

What constitutes a proof of $n \leq m$?

15-151 Refresher

What constitutes a proof of $n \leq m$?
We just have to define what (\leq) means!
(1) $\forall n, n \leq n$
(2) $\forall m n, n \leq m \Rightarrow n \leq m+1$

This looks familiar!

15-151 Refresher

What constitutes a proof of $n \leq m$?
We just have to define what (\leq) means!
(1) $\forall n, n \leq n$
(2) $\forall m n, n \leq m \Rightarrow n \leq m+1$

This looks familiar!

```
inductive Le : Nat }->\mathrm{ Nat }->\mathrm{ Prop
| refl {n : Nat} : Le n n
| step {n m : Nat} : Le n m }->\mathrm{ Le n (Nat.succ m)
```


conceptsHW1.pdf

```
inductive Le : Nat }->\mathrm{ Nat }->\mathrm{ Prop
| refl {n : Nat} : Le n n
| step {n m : Nat} : Le n m -> Le n (Nat.succ m)
def ex1 : Le 0 0 := @Le.refl 0
def ex1' : Le 0 0 := Le.refl
def ex2 : Le 0 3 :=
    Le.step (Le.step (Le.step Le.refl))
def ex3 : Le 1 3 := Le.step (Le.step Le.refl)
def ex4 : (n : Nat) >' (Le 1 n) :=
    <3, Le.step (Le.step Le.refl)\rangle
```


Some Sort of Contract

```
inductive Sorted : List Nat -> Prop
| nil_sorted : Sorted []
| single_sorted : (n : Nat) -> Sorted [x]
| cons_sorted : (n m : Nat) }
    (xs : List Nat) }
    Le n m }
    Sorted (m :: xs) }
    Sorted (n :: m :: xs)
def search : Nat
    (xs : List Nat)
    -> Sorted xs
    -> Option Nat := sorry
```


A Type for Term Equality

If we can express a relation like \leq and sortedness, how about equality?

A Type for Term Equality

If we can express a relation like \leq and sortedness, how about equality?

```
inductive Eq (A : Type) : A }->\textrm{A}->\mathrm{ Prop
| refl (a : A) : Eq A a a
```

```
def symm (A : Type) (x y : A) (h : Eq A x y) : Eq A y x
    match h with
    | Eq.refl x => Eq.refl
def trans (A : Type) (x y z : A)
    (h1 : Eq A x y) (h2 : Eq A y z)
    : Eq A x z :=
    match h1 with
    | Eq.refl x => h2
def plus_comm : (n m : Nat) -> Eq Nat (n + m) (m + n) := sorry
def inf_primes : (n : nat) }
                        (m : Nat) >' ((m > n) }\times(\mathrm{ Prime m)) := sorry
```


[^0]: ${ }^{1}$ Readers may note the parallels to another CS course mantra.

