
Introduction and Lambda Calculus

Hype for Types

January 16, 2024

Hype for Types Introduction and Lambda Calculus January 16, 2024 1 / 23



Introduction

Hype for Types Introduction and Lambda Calculus January 16, 2024 2 / 23



Welcome to Hype for Types!

Instructors:
▶ Ari Battleman (zbattlem)
▶ Kiera O’Flynn (koflynn)
▶ Sonya Simkin (ssimkin)
▶ Yosef Alsuhaibani (yalsuhai)

Attendance
▶ In general, you have to come to lecture to pass
▶ Let us know if you need to miss a week

Homework
▶ Every lecture will have an associated homework
▶ Graded on effort (not correctness)
▶ If you spend more than an hour, please stop1

1Unless you’re having fun!
Hype for Types Introduction and Lambda Calculus January 16, 2024 3 / 23



Other Stuff

Please join the Discord and Gradescope if you haven’t

We assume everyone has 150 level knowledge of functional
programming and type systems

▶ If you don’t have this and feel really lost, talk to us after class (and a
150 head TA will bring you up to speed)

Hype for Types Introduction and Lambda Calculus January 16, 2024 4 / 23



Motivation

Hype for Types Introduction and Lambda Calculus January 16, 2024 5 / 23



Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

1 + "hello"

fun f x = f x

malloc(sizeof(int)); return;

free(A); free(A);

A[len(A)]

@requires is_sorted(A)

https://xkcd.com/327/

Hype for Types Introduction and Lambda Calculus January 16, 2024 6 / 23

https://xkcd.com/327/


Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 16, 2024 7 / 23



Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 16, 2024 7 / 23



Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?2

2 Foreshadowing: “a literary device in which a writer gives an advance hint of what
is to come later in the story.” Wikipedia, “Foreshadowing,” retrieved 30 Aug 2022

Hype for Types Introduction and Lambda Calculus January 16, 2024 7 / 23



Type Theory at Large

Hype for Types Introduction and Lambda Calculus January 16, 2024 8 / 23



Goal of This Course

We do not ask students to master the content as in an academic
course

We do not replace any academic courses

We do not focus on depth, but rather focus on breath

We DO expect you to have fun

We DO hope to spark your interest in PL theory and start pursuing
coursework and/or research in adjacent areas after taking this course

We DO want you to learn about different fascinating aspects of types
that you would otherwise take advanced courses and/or read
complicated academic papers to understand

Hype for Types Introduction and Lambda Calculus January 16, 2024 9 / 23



Goal of This Course

We do not ask students to master the content as in an academic
course

We do not replace any academic courses

We do not focus on depth, but rather focus on breath

We DO expect you to have fun

We DO hope to spark your interest in PL theory and start pursuing
coursework and/or research in adjacent areas after taking this course

We DO want you to learn about different fascinating aspects of types
that you would otherwise take advanced courses and/or read
complicated academic papers to understand

Hype for Types Introduction and Lambda Calculus January 16, 2024 9 / 23



Course Credit

3 unit, P/F

For undergraduate, count towards 360 total units graduation
requirement

For MSCS, count towards 12 units “MSCS elective units”

Hype for Types Introduction and Lambda Calculus January 16, 2024 10 / 23



Caveat

You will see a lot of weird symbols in this class, please don’t be intimated.
We especially love λ.

Hype for Types Introduction and Lambda Calculus January 16, 2024 11 / 23



Lambda Calculus

Hype for Types Introduction and Lambda Calculus January 16, 2024 12 / 23



Building a tiny language

The simply-typed lambda calculus is simple. It only has four features3:

Unit (“empty tuples”)

Booleans

Tuples

Functions

Goal

To use STLC as a tool to study how type checker works.

3which is a subset of Standard ML
Hype for Types Introduction and Lambda Calculus January 16, 2024 13 / 23



Building a tiny language

The simply-typed lambda calculus is simple. It only has four features3:

Unit (“empty tuples”)

Booleans

Tuples

Functions

Goal

To use STLC as a tool to study how type checker works.

3which is a subset of Standard ML
Hype for Types Introduction and Lambda Calculus January 16, 2024 13 / 23



Expressions

We represent our expressions using a grammar:

e ::= x variable
| ⟨⟩ unit
| false false boolean
| true true boolean
| if e1 then e2 else e3 boolean case analysis
| ⟨e1, e2⟩ tuple
| fst(e) first tuple element
| snd(e) second tuple element
| λx : τ. e function abstraction (lambda)
| e1 e2 function application

Hype for Types Introduction and Lambda Calculus January 16, 2024 14 / 23



Types

Similarly, we define our types as follows:

τ ::= unit
| bool
| τ1 × τ2
| τ1 → τ2

Million-dollar Question

How do we check if e : τ?

Hype for Types Introduction and Lambda Calculus January 16, 2024 15 / 23



Types

Similarly, we define our types as follows:

τ ::= unit
| bool
| τ1 × τ2
| τ1 → τ2

Million-dollar Question

How do we check if e : τ?

Hype for Types Introduction and Lambda Calculus January 16, 2024 15 / 23



Inference Rules
In logic, we use inference rules to state how facts follow from other facts.

premise1 premise2 . . .

conclusion

For example:

you are here you are hyped

you are hyped for types functions are values

it’s raining x is outside

x is getting wet

Socrates is a man All men are mortal

Socrates is mortal

n is a number

n + 1 is a number

f total x valuable

f x valuable

Hype for Types Introduction and Lambda Calculus January 16, 2024 16 / 23



Inference Rules
In logic, we use inference rules to state how facts follow from other facts.

premise1 premise2 . . .

conclusion

For example:

you are here you are hyped

you are hyped for types functions are values

it’s raining x is outside

x is getting wet

Socrates is a man All men are mortal

Socrates is mortal

n is a number

n + 1 is a number

f total x valuable

f x valuable

Hype for Types Introduction and Lambda Calculus January 16, 2024 16 / 23



Typing Rules: First Attempt

Consider the judgement e : τ (“e has type τ”). Let’s try to express some
simple typing rules.

⟨⟩ : unit false : bool true : bool

e1 : bool e2 : τ e3 : τ

if e1 then e2 else e3 : τ

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 × τ2

e : τ1 × τ2

fst(e) : τ1

e : τ1 × τ2

snd(e) : τ2

Question

How do we write rules for functions?

Hype for Types Introduction and Lambda Calculus January 16, 2024 17 / 23



Typing Rules: First Attempt

Consider the judgement e : τ (“e has type τ”). Let’s try to express some
simple typing rules.

⟨⟩ : unit false : bool true : bool

e1 : bool e2 : τ e3 : τ

if e1 then e2 else e3 : τ

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 × τ2

e : τ1 × τ2

fst(e) : τ1

e : τ1 × τ2

snd(e) : τ2

Question

How do we write rules for functions?

Hype for Types Introduction and Lambda Calculus January 16, 2024 17 / 23



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

(λx : τ1. e) : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 16, 2024 18 / 23



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

(λx : τ1. e) : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 16, 2024 18 / 23



Typing Rules: Functions

Let’s give it a shot.

e1 : τ1 → τ2 e2 : τ1

e1 e2 : τ2

Looks good so far...

e : τ2 (?)

(λx : τ1. e) : τ1 → τ2

Key Idea

Expressions only have types given a context!

Hype for Types Introduction and Lambda Calculus January 16, 2024 18 / 23



Contexts

Intuition

If, given x : τ1, we know e : τ2, then (λx : τ1. e) : τ1 → τ2.

Therefore, we need a context (denoted Γ) which associates types with
variables.

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ (λx : τ1. e) : τ1 → τ2

What types does some variable x have? It depends on the previous code!

x : τ ∈ Γ

Γ ⊢ x : τ

Hype for Types Introduction and Lambda Calculus January 16, 2024 19 / 23



All the rules!

x : τ ∈ Γ

Γ ⊢ x : τ
(var)

Γ ⊢ ⟨⟩ : unit
(unit)

Γ ⊢ false : bool
(false)

Γ ⊢ true : bool
(true)

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
(if)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2
(tup)

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst(e) : τ1
(fst)

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd(e) : τ2
(snd)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ (λx : τ1. e) : τ1 → τ2
(abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(app)

Hype for Types Introduction and Lambda Calculus January 16, 2024 20 / 23



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 16, 2024 21 / 23



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 16, 2024 21 / 23



Example: what’s the type?

Let’s derive that

· ⊢ (λx : unit. ⟨x , true⟩) ⟨⟩ : unit× bool

by using the rules.

x : unit ∈ ·, x : unit

·, x : unit ⊢ x : unit
(var)

·, x : unit ⊢ true : bool
(true)

·, x : unit ⊢ ⟨x, true⟩ : unit × bool
(tup)

· ⊢ λx : unit. ⟨x, true⟩ : unit → unit × bool
(abs)

· ⊢ ⟨⟩ : unit
(unit)

· ⊢ (λx : unit. ⟨x, true⟩) ⟨⟩ : unit × bool
(app)

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Hype for Types Introduction and Lambda Calculus January 16, 2024 21 / 23



Get Hype.

Hype for Types Introduction and Lambda Calculus January 16, 2024 22 / 23



The Future is Bright

How can you use basic algebra to manipulate types?

How do types and programs relate to logical proofs?

How can we automatically fold (and unfold) any recursive type?

How can types allow us to do safe imperative programming?

Can we make it so that programs that typecheck iff they’re correct?

Hype for Types Introduction and Lambda Calculus January 16, 2024 23 / 23


	Introduction
	Motivation
	Lambda Calculus
	Defining the Language
	Type Checking

	Get Hype.

