Algebraic Data Types

Hype for Types

January 23, 2024

[Algebraic Data Types](#page-105-0) **Algebraic Data Types** January 23, 2024 1/36

イロメ イ部メ イヨメ イヨメー

重

Look at types we already know from a different angle

 299

イロト イ部 トイヨ トイヨト

Outline

- Look at types we already know from a different angle
- **•** Formalize some important new type concepts

э

← ロ → → ← 何 →

 \mathcal{A} . ÷ \sim

Outline

- Look at types we already know from a different angle
- Formalize some important new type concepts
- **o** break the universe

4 0 F → 母 QQ

э

[Introduction to Counting](#page-4-0)

Be prepared to learn some very serious math such as

$$
1+2=3
$$

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type $\tau^{\mathsf{a}}.$

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type $\tau^{\mathsf{a}}.$

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

> $|bool| = 2$ $|order| = 3$

KONKAPRA BRADE

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type $\tau^{\mathsf{a}}.$

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

> $|bool| = 2$ $|order| = 3$

Often, we refer to **bool** as 2 and **order** as 3:

- $true \cdot 2$
- LESS : 3

 299

KONKAPRA BRADE

Question

What is $|\tau_1 \times \tau_2|$?

 299

Question

What is $|\tau_1 \times \tau_2|$?

 $|\tau_1| \times |\tau_2|$ - hence, the notation.

Question

What is $|\tau_1 \times \tau_2|$?

 $|\tau_1| \times |\tau_2|$ - hence, the notation.

For example,

$$
|\mathbf{bool} \times \mathbf{order}| = |\mathbf{bool}| \times |\mathbf{order}|
$$

$$
= 2 \times 3
$$

$$
= 6
$$

4 0 8

- ← 冊 →

重

 299

What do you know!

Theorem: Commutativity of Products

For all τ_1, τ_2 :

 $\tau_1 \times \tau_2 \simeq \tau_2 \times \tau_1$

Theorem: Associativity of Products

For all τ_1, τ_2, τ_3 :

 $\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3$

э

 QQ

イロト イ押 トイヨ トイヨ トー

What do you know!

Theorem: Commutativity of Products

For all τ_1, τ_2 :

 $\tau_1 \times \tau_2 \simeq \tau_2 \times \tau_1$

Theorem: Associativity of Products

For all τ_1, τ_2, τ_3 :

$$
\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3
$$

Question

How do we know?

Proving Type Isomorphisms

To prove that $\tau \simeq \tau'$, we need a *bijection* between τ and τ' .

Proving Type Isomorphisms

To prove that $\tau \simeq \tau'$, we need a *bijection* between τ and τ' .

We write two (total) functions, $f:\tau \rightarrow \tau'$ and $f':\tau' \rightarrow \tau$, such that f and f' are *inverses*.

> f' $(f \ x) \cong x$ f $(f' x) \cong x$

4 0 F

 Ω

Associativity of Products: Proved!

Let's prove associativity of products:

$$
\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3
$$

Associativity of Products: Proved!

Let's prove associativity of products:

$$
\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3
$$

Need to write:

$$
f: \tau_1 \times (\tau_2 \times \tau_3) \to (\tau_1 \times \tau_2) \times \tau_3
$$

$$
f': (\tau_1 \times \tau_2) \times \tau_3 \to \tau_1 \times (\tau_2 \times \tau_3)
$$

K ロ ▶ K 何 ▶

÷.

 QQ

Associativity of Products: Proved!

Let's prove associativity of products:

$$
\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3
$$

Need to write:

$$
f: \tau_1 \times (\tau_2 \times \tau_3) \to (\tau_1 \times \tau_2) \times \tau_3
$$

$$
f': (\tau_1 \times \tau_2) \times \tau_3 \to \tau_1 \times (\tau_2 \times \tau_3)
$$

Nicel

$$
f = \text{fn}(a, (b, c)) \Rightarrow ((a, b), c)
$$

 $f' = \text{fn}(a, b), c) \Rightarrow (a, (b, c))$

K ロ ▶ K 何 ▶

÷.

 QQ

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\tau \times 1 = \tau$ $1 \times \tau = \tau$

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\tau \times 1 = \tau$ $1 \times \tau = \tau$

Yes - unit!

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\tau \times 1 = \tau$ $1 \times \tau = \tau$

Yes - unit!

Increment

Question

Is there such thing as $\tau + 1$?

Increment

Question

Is there such thing as $\tau + 1$?

Answer

Yes! τ option.

重

 2990

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 0 8

Increment

Question

Is there such thing as $\tau + 1$?

Answer

Yes! τ option.

 2990

datatype ('a,'b) either = Left of 'a | Right of 'b¹

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$
\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}
$$

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$
\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}
$$

$$
\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x_1 : \tau_1 \vdash e_1 : \tau \qquad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \text{case } e \text{ of } x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : \tau} \quad \text{(case)}
$$

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$
\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}
$$

$$
\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x_1 : \tau_1 \vdash e_1 : \tau \qquad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \text{case } e \text{ of } x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : \tau} \quad \text{(case)}
$$

And of course...

For all τ_1, τ_2 :

$$
|\tau_1 + \tau_2| = |\tau_1| + |\tau_2|
$$


```
datatype ('a, 'b) either = Left of 'a | Right of 'b
```
Notice:

type 'a option = $('a, unit)$ either

We can represent τ option as τ + unit.

Claim

For all types A, B, C :

$(A \times B) + (A \times C) \simeq A \times (B + C)$

Claim

For all types A, B, C :

$(A \times B) + (A \times C) \simeq A \times (B + C)$

$$
f: ('a * 'b, 'a * 'c) either \rightarrow 'a * ('b, 'c) either f': 'a * ('b, 'c) either \rightarrow ('a * 'b, 'a * 'c) either
$$

K ロ ▶ K 御 ▶ K 唐 ▶

医单头 人名

 299

Claim

For all types A, B, C :

$$
(A \times B) + (A \times C) \simeq A \times (B + C)
$$

$$
f: ('a * 'b, 'a * 'c) either -> 'a * ('b, 'c) either f': 'a * ('b, 'c) either -> ('a * 'b, 'a * 'c) either
$$

 $f = \text{fn Left} (a,b) \Rightarrow (a,\text{Left } b) \mid \text{Right} (a,c) \Rightarrow (a,\text{Right } c)$ $f' = \texttt{fn}$ (a, Left b) => Left (a, b) | (a, Right c) => Right (a, c)

Claim

For all types A, B, C :

$$
(A \times B) + (A \times C) \simeq A \times (B + C)
$$

$$
f: ('a * 'b, 'a * 'c) either -> 'a * ('b, 'c) either f': 'a * ('b, 'c) either -> ('a * 'b, 'a * 'c) either
$$

 $f = \text{fn Left} (a,b) \Rightarrow (a,\text{Left } b) \mid \text{Right} (a,c) \Rightarrow (a,\text{Right } c)$ $f' = \texttt{fn}$ (a, Left b) => Left (a, b) | (a, Right c) => Right (a, c)

Practical Application

Code refactoring principle! If both cases store the same data, factor it out.
If we can add, what's 0?

If we can add, what's 0?

We call it **void**, the empty type.²

2 Unlike C's void type, which is actually unit.

← ロ → → ← 何 →

 298

э

If we can add, what's 0?

We call it **void**, the empty type.²

void is a type which has no value (terminology is *uninhabited*). How do we construct a type with no value (in SML)?

$$
\frac{\Gamma \vdash e : \mathsf{void}}{\Gamma \vdash \mathsf{absurd}(e) : \tau} \; (\texttt{ABSURD})
$$

²Unlike C's void type, which is actually unit.

 QQ

← ロ → → ← 何 →

If we can add, what's 0?

We call it **void**, the empty type.²

void is a type which has no value (terminology is *uninhabited*). How do we construct a type with no value (in SML)?

$$
\frac{\Gamma \vdash e : \mathsf{void}}{\Gamma \vdash \mathsf{absurd}(e) : \tau} \; (\texttt{ABSURD})
$$

Implementing via SML Hacking

datatype void = Void of void fun absurd $(Void v) = absurd v$

Notice: absurd is total!

²Unlike C's void type, which is actually unit. **K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶** ÷. QQ Hype for Types [Algebraic Data Types](#page-0-0) Algebraic Data Types January 23, 2024 17 / 36

void*

Claim

For all types τ :

τ + void $\simeq \tau$

void*

Claim

For all types τ :

τ + void $\simeq \tau$

 $f: ('tau, void)$ either $\rightarrow 'tau$ f' : 'tau -> ('tau, void) either

void*

Claim

For all types τ :

$$
\tau + \text{void} \simeq \tau
$$

$$
f: ('tau, void) either -> 'tau
$$
\n $f' : 'tau -> ('tau, void) either$

$$
f = \text{fn Left} \ x \Rightarrow x \ | \ \text{Right} \ v \Rightarrow \text{ absurd} \ v
$$
\n
$$
f' = \text{fn} \ x \Rightarrow \text{Left} \ x
$$
\n
$$
= \text{Left}
$$

Ε

 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

[Functions](#page-43-0)

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

• How many choices for output of first object of type A?

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

 \bullet How many choices for output of first object of type A? |B|

How many (total) values are there of type $A \rightarrow B$, in terms of $|A|$ and $|B|$?

- \bullet How many choices for output of first object of type A? |B|
- How many choices for the output of the second?

4 0 F

 QQQ

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- \bullet How many choices for output of first object of type A? |B|
- \bullet How many choices for the output of the second? |B|

4 0 F

 QQQ

How many (total) values are there of type $A \rightarrow B$, in terms of $|A|$ and $|B|$?

- \bullet How many choices for output of first object of type A? |B|
- \bullet How many choices for the output of the second? |B|
- By using our cherished Multiplication Principle from concepts ...

4 0 F

 QQQ

How many (total) values are there of type $A \rightarrow B$, in terms of $|A|$ and $|B|$?

- \bullet How many choices for output of first object of type A? |B|
- \bullet How many choices for the output of the second? |B|
- By using our cherished Multiplication Principle from concepts ...

Theorem

There are $\vert B\vert^{\vert A\vert}$ total functions from type A to type $B.$

 Ω

Example: Power of a Power

In math, it's true that:

$$
(\mathcal{C}^B)^A = \mathcal{C}^{A \times B}
$$

Example: Power of a Power

In math, it's true that:

$$
(\mathcal{C}^B)^A = \mathcal{C}^{A \times B}
$$

In terms of types, that would mean:

$$
\mathcal{A} \to (\mathcal{B} \to \mathcal{C}) \simeq \mathcal{A} \times \mathcal{B} \to \mathcal{C}
$$

э

 QQ

4日下

Example: Power of a Power

In math, it's true that:

$$
(\mathcal{C}^B)^A = \mathcal{C}^{A \times B}
$$

In terms of types, that would mean:

$$
A \to (B \to C) \simeq A \times B \to C
$$

Yes!

$$
f = Fn.uncurry : ('a \to 'b \to 'c) \to ('a * 'b \to 'c)
$$

$$
f' = Fn.curry : ('a * 'b \to 'c) \to ('a \to 'b \to 'c)
$$

Þ

4 0 8

→ 母

э

[Recursive Types](#page-54-0)

datatype 'a list = Nil | Cons of 'a $*$ 'a list

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a $*$ 'a list

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a $*$ 'a list

type 'a list = $(\text{unit}, \text{'a} * \text{'a} \text{ list})$ either

datatype 'a list = Nil | Cons of 'a $*$ 'a list

datatype 'a list = Left of unit | Right of 'a $*$ 'a list

type 'a list = (unit, 'a $*$ 'a list) either

 $L(\alpha) \simeq$ unit $+\alpha \times L(\alpha)$

datatype 'a list = Nil | Cons of 'a $*$ 'a list

datatype 'a list = Left of unit | Right of 'a $*$ 'a list

type 'a list = (unit, 'a $*$ 'a list) either

 $L(\alpha) \simeq$ unit $+\alpha \times L(\alpha)$

$$
L(\alpha) = 1 + \alpha \times L(\alpha)
$$

= 1 + \alpha \times (1 + \alpha \times L(\alpha))
= 1 + \alpha + \alpha \times L(\alpha)
= 1 + \alpha + \alpha \times (1 + \alpha \times L(\alpha))
= 1 + \alpha + \alpha^2 + \alpha^3 + ...

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

How many natural numbers are there?

重

 298

イロト イ部 トイヨ トイヨト

How many natural numbers are there?

datatype nat = Zero | Succ of nat

How many natural numbers are there?

datatype nat = Zero | Succ of nat

 $nat = unit + nat$

How many natural numbers are there?

datatype nat = Zero | Succ of nat

 $nat = unit + nat$

 $\mathsf{nat} = 1 + 1 + 1 + \cdots = \infty$

How many natural numbers are there?

datatype nat = Zero | Succ of nat

 $nat = unit + nat$

 $\mathsf{nat} = 1 + 1 + 1 + \cdots = \infty$

Therefore, we would expect:

 $\infty = 1 + \infty$

nat \simeq nat option

KOD KARD KED KED ORA

How many natural numbers are there?

datatype nat = Zero | Succ of nat

 $nat = unit + nat$

 $nat = 1 + 1 + 1 + \cdots = \infty$

Therefore, we would expect:

 $\infty = 1 + \infty$

nat \simeq nat option

 $f = fn$ Zero => NONE | Succ n => SOME n $f' = f n$ NONE => Zero | SOME n => Succ n

Binary Trees

```
datatype 'a tree
 = Empty
 | Node of 'a tree * 'a * 'a tree
```
Binary Trees

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

$$
T(\alpha) \simeq \text{unit} + T(\alpha) \times \alpha \times T(\alpha)
$$

$$
\simeq \text{unit} + \alpha \times T(\alpha)^2
$$

Binary Shrubs

```
datatype 'a shrub
= Leaf of a| Node of 'a shrub * 'a shrub
```
Binary Shrubs

```
datatype 'a shrub
= Leaf of a| Node of 'a shrub * 'a shrub
```

$$
S(\alpha) \simeq \alpha + S(\alpha) \times S(\alpha)
$$

$$
\simeq \alpha + S(\alpha)^2
$$

Counting

How many binary shrubs are there?

Counting

How many binary shrubs are there?

$$
S(\alpha) = \alpha + S(\alpha)^2
$$

Counting

How many binary shrubs are there?

$$
S(\alpha) = \alpha + S(\alpha)^{2}
$$

$$
0 = S(\alpha)^{2} - S(\alpha) + \alpha
$$

Counting

How many binary shrubs are there?

$$
S(\alpha) = \alpha + S(\alpha)^2
$$

$$
0 = S(\alpha)^2 - S(\alpha) + \alpha
$$

$$
S(\alpha) = \frac{1 - \sqrt{1 - 4\alpha}}{2} \qquad \text{(quadratic formula)}
$$

K ロ ▶ K 倒 ▶

 -4

重

 298

Counting

How many binary shrubs are there?

$$
S(\alpha) = \alpha + S(\alpha)^2
$$

$$
0 = S(\alpha)^2 - S(\alpha) + \alpha
$$

$$
S(\alpha) = \frac{1 - \sqrt{1 - 4\alpha}}{2} \qquad \text{(quadratic formula)}
$$

$$
S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \dots + \frac{1}{n} \binom{2n - 2}{n - 1} \alpha^n + \dots
$$

$$
\text{(Taylor series)}
$$

重

 299

イロメス 御き スミメス ミメー

$$
S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots
$$

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

• Each leaf has α choices for its value

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

- **•** Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count

4 D F

э

 QQ

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

- **•** Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

4 0 8

 Ω

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

- **Each leaf has** α **choices for its value**
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
1
rac{1}{n}\binom{2n-2}{n-1}{n-2 \choose n-1} is the number of 'a shrubs of n nodes!
```
 QQQ

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

- **Each leaf has** α **choices for its value**
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
1
rac{1}{n}\binom{2n-2}{n-1}{n-2 \choose n-1} is the number of 'a shrubs of n nodes!
```
• This sequence is called the Catalan numbers

 QQQ

$$
S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} {2n - 2 \choose n - 1} \alpha^{n} + \ldots
$$

- **Each leaf has** α **choices for its value**
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
1
rac{1}{n}\binom{2n-2}{n-1}{n-2 \choose n-1} is the number of 'a shrubs of n nodes!
```
- This sequence is called the Catalan numbers
- **•** This technique is called Generating Functions

[haha type derivates go brrr](#page-82-0)

⋍

∢ ロ ▶ ィ 伊

重

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

 299

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

 299

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

Our Plan

>:)

$$
\frac{d}{d\alpha}\alpha^3 = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)
$$

>:)

$$
\frac{d}{d\alpha}\alpha^3 = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)
$$

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$

÷

>:)

$$
\frac{d}{d\alpha}\alpha^3 = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)
$$

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$

$$
\alpha \times \alpha \times \alpha \qquad \mapsto \qquad 3 \times (\alpha \times \alpha)
$$

>:)

$$
\frac{d}{d\alpha}\alpha^3 = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)
$$

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$

$$
\alpha \times \alpha \times \alpha \qquad \mapsto \qquad 3 \times (\alpha \times \alpha)
$$

Conclusion

Differentiating a power "eats" a tuple slot, and tells you which element was removed.

Differentiating a List

Recall that:

$$
a + ar + ar2 + ar3 + \cdots = \frac{a}{1-r}
$$

 3 What the hype is a [negative type?](https://legacy.cs.indiana.edu/~sabry/papers/rational.pdf)

重

 299

イロト イ部 トイヨ トイヨト

Differentiating a List

Recall that:

$$
a + ar + ar2 + ar3 + \cdots = \frac{a}{1-r}
$$

We have:³

$$
L(\alpha) = 1 + \alpha + \alpha^2 + \dots \stackrel{?}{=} \frac{1}{1 - \alpha}
$$

÷.

 299

イロト イ部 トイヨ トイヨト

 3 What the hype is a [negative type?](https://legacy.cs.indiana.edu/~sabry/papers/rational.pdf)

Differentiating a List

Recall that:

$$
a + ar + ar2 + ar3 + \cdots = \frac{a}{1-r}
$$

We have:³

$$
L(\alpha) = 1 + \alpha + \alpha^2 + \dots \stackrel{?}{=} \frac{1}{1 - \alpha}
$$

$$
\frac{d}{d\alpha}L(\alpha) = \frac{d}{d\alpha} \frac{1}{1-\alpha}
$$

$$
= \frac{1}{(1-\alpha)^2}
$$

$$
= \left(\frac{1}{1-\alpha}\right)^2
$$

$$
= L(\alpha)^2
$$

重

 299

イロメス 御き スミメス ミメー

Tree for Two, and Two for Tree

We said:

$$
T(\alpha) = 1 + \alpha \, T(\alpha)^2
$$

Here we go again...

Tree for Two, and Two for Tree

We said:

$$
\mathcal{T}(\alpha) = 1 + \alpha \mathcal{T}(\alpha)^2
$$

Here we go again...

$$
\frac{d}{d\alpha}T(\alpha) = \frac{d}{d\alpha}1 + \frac{d}{d\alpha}\alpha T(\alpha)^2
$$

$$
= \alpha \times \frac{d}{d\alpha}T(\alpha)^2 + \frac{d}{d\alpha}\alpha \times T(\alpha)^2
$$

$$
= 2\alpha T(\alpha) \times \frac{d}{d\alpha}T(\alpha) + T(\alpha)^2
$$

$$
\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2 \left(\frac{1}{1 - 2\alpha T(\alpha)}\right)
$$

$$
= T(\alpha)^2 L(2\alpha T(\alpha))
$$

イロト イ部 トイヨ トイヨト

重

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$

$$
\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2
$$

$$
\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2L(2\alpha T(\alpha))
$$

店

 2990

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$

$$
\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2
$$

$$
\frac{d}{d\alpha}\tau(\alpha) = \tau(\alpha)^2L(2\alpha\tau(\alpha))
$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

a <http://strictlypositive.org/diff.pdf>

4 D F

∢母→

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$
 "punctured" tuple
\n
$$
\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2
$$

\n
$$
\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2L(2\alpha T(\alpha))
$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

a <http://strictlypositive.org/diff.pdf>

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

4 D F

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$
 "punctured" tuple
\n
$$
\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2
$$
list zipper
\n
$$
\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2L(2\alpha T(\alpha))
$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

a <http://strictlypositive.org/diff.pdf>

4 D F

$$
\frac{d}{d\alpha}\alpha^3 = 3\alpha^2
$$
 "punctured" tuple
\n
$$
\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2
$$
list zipper
\n
$$
\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2L(2\alpha T(\alpha))
$$
tree zipper

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

a <http://strictlypositive.org/diff.pdf>

4 同 ト

4 D F

• Figured out the sizes of various types

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)

4 0 F → 母 $\leftarrow \equiv$ \rightarrow

э

 QQ

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)
- Considered recursive types⁴

4 0 F ∢母 \Rightarrow э QQ

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)
- Considered recursive types⁴
- Used type equations and generating functions to count objects

 Ω

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)
- Considered recursive types⁴
- Used type equations and generating functions to count objects
- Invented a type-level hole punch

⁴More on that later...

4 D F

 Ω