Algebraic Data Types

Hype for Types

January 23, 2024

H	vpe	for	Τv	pes

Algebraic Data Types

January 23, 2024

イロト イポト イヨト イヨト

э

• Look at types we already know from a different angle

æ

・ロト ・四ト ・ヨト ・ヨト

Outline

- Look at types we already know from a different angle
- Formalize some important new type concepts

э

Image: A matrix

Outline

- Look at types we already know from a different angle
- Formalize some important new type concepts
- break the universe

э

< ∃⇒

< A[™]

Introduction to Counting

ype '		

æ

3/36

Be prepared to learn some very serious math such as

1 + 2 = 3

	Types

- ∢ ⊒ →

Image: A matrix

э

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type τ^a .

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

э

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type τ^a .

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

> $|\mathbf{bool}| = 2$ $|\mathbf{order}| = 3$

		pes

3

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type τ^a .

^athis does not work quite well with polymorphism unfortunately.

datatype bool = false | true datatype order = LESS | EQUAL | GREATER What size are they?

> $|\mathbf{bool}| = 2$ $|\mathbf{order}| = 3$

Often, we refer to **bool** as 2 and **order** as 3:

- true : 2
- LESS:3

3

	for 🛛	

3

6 / 36

<ロト < 四ト < 三ト < 三ト

Question

What is $|\tau_1 \times \tau_2|$?

Hy		

2

<ロト < 四ト < 三ト < 三ト

Question

What is $|\tau_1 \times \tau_2|$?

 $| au_1| imes | au_2|$ - hence, the notation.

	Types

2

イロト イボト イヨト イヨト

Question

What is $|\tau_1 \times \tau_2|$?

 $|\tau_1| \times |\tau_2|$ - hence, the notation.

For example,

$$|\mathbf{bool} \times \mathbf{order}| = |\mathbf{bool}| \times |\mathbf{order}|$$

= 2 × 3
= 6

2

7/36

イロト イボト イヨト イヨト

What do you know!

Theorem: Commutativity of Products

For all τ_1, τ_2 :

 $\tau_1 \times \tau_2 \simeq \tau_2 \times \tau_1$

Theorem: Associativity of Products For all τ_1, τ_2, τ_3 : $\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3$

э

イロト 不得 トイヨト イヨト

What do you know!

Theorem: Commutativity of Products

For all τ_1, τ_2 :

 $\tau_1 \times \tau_2 \simeq \tau_2 \times \tau_1$

Theorem: Associativity of Products For all τ_1, τ_2, τ_3 : $\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3$

Question

How do we know?

	4		≣ *)⊄(*
Hype for Types	Algebraic Data Types	January 23, 2024	8 / 36

Proving Type Isomorphisms

To prove that $\tau \simeq \tau'$, we need a *bijection* between τ and τ' .

	Types

э

Image: A matrix

Proving Type Isomorphisms

To prove that $\tau \simeq \tau'$, we need a *bijection* between τ and τ' .

We write two (total) functions, $f : \tau \to \tau'$ and $f' : \tau' \to \tau$, such that f and f' are *inverses*.

f' (f x) \cong x f (f' x) \cong x

Hype	

Associativity of Products: Proved!

Let's prove associativity of products:

$$au_1 imes (au_2 imes au_3) \simeq (au_1 imes au_2) imes au_3$$

	Types

Image: A image: A

Image: A matrix

э

Associativity of Products: Proved!

Let's prove associativity of products:

$$au_1 imes (au_2 imes au_3) \simeq (au_1 imes au_2) imes au_3$$

Need to write:

$$f: \tau_1 \times (\tau_2 \times \tau_3) \to (\tau_1 \times \tau_2) \times \tau_3$$

$$f': (\tau_1 \times \tau_2) \times \tau_3 \to \tau_1 \times (\tau_2 \times \tau_3)$$

3 × < 3 ×

Image: A matrix

э

Associativity of Products: Proved!

Let's prove associativity of products:

$$au_1 imes (au_2 imes au_3) \simeq (au_1 imes au_2) imes au_3$$

Need to write:

$$f: \tau_1 \times (\tau_2 \times \tau_3) \to (\tau_1 \times \tau_2) \times \tau_3$$

$$f': (\tau_1 \times \tau_2) \times \tau_3 \to \tau_1 \times (\tau_2 \times \tau_3)$$

Nice!

$$f = fn (a, (b, c)) \Rightarrow ((a, b), c)$$

 $f' = fn ((a, b), c) \Rightarrow (a, (b, c))$

Hype for Types

Image: A matrix

э

10/36

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\begin{aligned} \tau \times \mathbf{1} &= \tau \\ \mathbf{1} \times \tau &= \tau \end{aligned}$

	Туре	

э

イロト イボト イヨト イヨト

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\begin{aligned} \tau \times \mathbf{1} &= \tau \\ \mathbf{1} \times \tau &= \tau \end{aligned}$

Yes - unit!

	Types

3

イロト イボト イヨト イヨト

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\begin{aligned} \tau \times \mathbf{1} &= \tau \\ \mathbf{1} \times \tau &= \tau \end{aligned}$

Yes - unit!

Hy		

æ

<ロ> <四> <ヨ> <ヨ>

Increment

Question

Is there such thing as $\tau + 1$?

	Types

æ

A D N A B N A B N A B N

Increment

Question

Is there such thing as $\tau + 1$?

Answer

Yes! τ option.

	Тур	

2

イロト イポト イヨト イヨト

Increment

Question

Is there such thing as $\tau + 1$?

Answer

Yes! τ option.

SOME <i>x</i>	(au choices)
NONE	(1 choice)

		pes

イロト イポト イヨト イヨト

2

datatype ('a,'b) either = Left of 'a | Right of 'b¹

¹In the Standard ML Basis, (almost) the Either structure! $\langle - - \rangle \land = \rangle \land = \rangle$

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}$$

¹In the Standard ML Basis, (almost) the Either structure!

datatype ('a,'b) either = Left of 'a | Right of 'b 1

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x_1 : \tau_1 \vdash e_1 : \tau \qquad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \textbf{case } e \text{ of } x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : \tau}$$
(CASE)

¹In the Standard ML Basis, (almost) the Either structure! $\langle \square \rangle \land \exists \rangle \land \exists \rangle \land \exists \rangle$

	Types

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x_1 : \tau_1 \vdash e_1 : \tau \qquad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathbf{case} \ e \ \mathbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : \tau}$$
(CASE)

And of course...

For all τ_1, τ_2 :

$$|\tau_1 + \tau_2| = |\tau_1| + |\tau_2|$$

¹In the Standard ML Basis, (almost) the Either structure!

Hype for Types Algebraic Data Types January 23, 2024	14 / 36
--	---------

```
datatype ('a, 'b) either = Left of 'a | Right of 'b
```

Notice:

type 'a option = ('a,unit) either

We can represent τ option as τ + unit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Claim

For all types A, B, C:

$$(A \times B) + (A \times C) \simeq A \times (B + C)$$

	Types

3

イロン 不聞 とくほとう ほとう

Claim

For all types A, B, C:

$(A \times B) + (A \times C) \simeq A \times (B + C)$

3

イロト 不得 トイヨト イヨト

Claim

For all types A, B, C:

$$(A \times B) + (A \times C) \simeq A \times (B + C)$$

 $f = \text{fn Left (a,b)} \Rightarrow (a, \text{Left b)} | \text{Right (a,c)} \Rightarrow (a, \text{Right c})$ $f' = \text{fn (a, \text{Left b)}} \Rightarrow \text{Left (a,b)} | (a, \text{Right c}) \Rightarrow \text{Right (a,c)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Claim

For all types A, B, C:

$$(A \times B) + (A \times C) \simeq A \times (B + C)$$

 $f = \text{fn Left (a,b)} \Rightarrow (a, \text{Left b)} | \text{Right (a,c)} \Rightarrow (a, \text{Right c})$ $f' = \text{fn (a, \text{Left b)}} \Rightarrow \text{Left (a,b)} | (a, \text{Right c}) \Rightarrow \text{Right (a,c)}$

Practical Application

Code refactoring principle! If both cases store the same data, factor it out.

Hype for Types

Algebraic Data Types

If we can add, what's 0?

2

・ロト ・四ト ・ヨト ・ヨト

If we can add, what's 0?

We call it **void**, the empty type.²

$^{2}\mbox{Unlike C's void type, which is actually unit.}$

If we can add, what's 0?

We call it **void**, the empty type.²

void is a type which has no value (terminology is *uninhabited*). How do we construct a type with no value (in SML)?

$$\frac{\Gamma \vdash e : \mathsf{void}}{\Gamma \vdash \mathsf{absurd}(e) : \tau} (\text{ABSURD})$$

²Unlike C's void type, which is actually **unit**.

< □ > < 同 >

If we can add, what's 0?

We call it **void**, the empty type.²

void is a type which has no value (terminology is *uninhabited*). How do we construct a type with no value (in SML)?

$$\frac{\Gamma \vdash e : \mathsf{void}}{\Gamma \vdash \mathsf{absurd}(e) : \tau} (\text{Absurd})$$

Implementing via SML Hacking

datatype void = Void of void
fun absurd (Void v) = absurd v

Notice: absurd is total!

²Unlike C's void type, which is actually **unit**.

	for ⁻	

3

(日)

void*

Claim

For all types τ :

$\tau + {\rm void} \simeq \tau$

	Fypes

3

void*

Claim

For all types τ :

$\tau + {\rm void} \simeq \tau$

f:('tau,void) either -> 'tau
f':'tau -> ('tau,void) either

Hype for Types		
----------------	--	--

3

イロト 不得 トイヨト イヨト

void*

Claim

For all types τ :

$$\tau + \operatorname{void} \simeq \tau$$

$$f = \text{fn Left } x \Rightarrow x | \text{Right } v \Rightarrow \text{absurd } v$$

 $f' = \text{fn } x \Rightarrow \text{Left } x$
 $= \text{Left}$

Ξ.

Functions

	for	

3

・ロト ・四ト ・ヨト ・ヨト

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

э

→ < ∃ →</p>

Image: A matrix and a matrix

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

• How many choices for output of first object of type A?

Image: A matrix

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

• How many choices for output of first object of type A? |B|

Image: A matrix

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- How many choices for output of first object of type A? |B|
- How many choices for the output of the second?

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- How many choices for output of first object of type A? |B|
- How many choices for the output of the second? |B|

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- How many choices for output of first object of type A? |B|
- How many choices for the output of the second? |B|
- By using our cherished Multiplication Principle from concepts ...

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- How many choices for output of first object of type A? |B|
- How many choices for the output of the second? |B|
- By using our cherished Multiplication Principle from concepts ...

Theorem

There are $|B|^{|A|}$ total functions from type A to type B.

Example: Power of a Power

In math, it's true that:

$$(C^B)^A = C^{A \times B}$$

	for	

→ ∃ →

э

Example: Power of a Power

In math, it's true that:

$$(C^B)^A = C^{A \times B}$$

In terms of types, that would mean:

$$A
ightarrow (B
ightarrow C) \simeq A imes B
ightarrow C$$

	Туре	

э

Example: Power of a Power

In math, it's true that:

$$(C^B)^A = C^{A \times B}$$

In terms of types, that would mean:

$$A \rightarrow (B \rightarrow C) \simeq A \times B \rightarrow C$$

Yes!

э

21/36

Recursive Types

	for 🛛	

3

22 / 36

・ロト ・四ト ・ヨト ・ヨト

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a * 'a list

Hy		

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a * 'a list

type 'a list = (unit, 'a * 'a list) either

Hype f	

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < □> < □> ○ < ○

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a * 'a list

type 'a list = (unit, 'a * 'a list) either

 $L(\alpha) \simeq \text{unit} + \alpha \times L(\alpha)$

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a * 'a list

type 'a list = (unit, 'a * 'a list) either

 $L(\alpha) \simeq \text{unit} + \alpha \times L(\alpha)$

$$L(\alpha) = 1 + \alpha \times L(\alpha)$$

= 1 + \alpha \times (1 + \alpha \times L(\alpha))
= 1 + \alpha + \alpha \times L(\alpha)
= 1 + \alpha + \alpha^2 + \alpha^3 + \dots

How many natural numbers are there?

э

・ロト ・四ト ・ヨト ・ヨト

How many natural numbers are there?

datatype nat = Zero | Succ of nat

	٠	미 🕨 🖉 🕨 🤞 🖻 🕨 🦉
Hype for Types	Algebraic Data Types	January 23, 2024

24 / 36

How many natural numbers are there?

datatype nat = Zero | Succ of nat

nat = unit + nat

	Types

э

イロト イボト イヨト イヨト

How many natural numbers are there?

datatype nat = Zero | Succ of nat

nat = unit + nat

 $\mathsf{nat} = 1 + 1 + 1 + \dots = \infty$

3

イロト 不得 トイヨト イヨト

How many natural numbers are there?

datatype nat = Zero | Succ of nat

nat = unit + nat

 $\mathsf{nat} = 1 + 1 + 1 + \dots = \infty$

Therefore, we would expect:

 $\infty = 1 + \infty$

nat \simeq nat option

(日)

How many natural numbers are there?

datatype nat = Zero | Succ of nat

nat = unit + nat

 $nat = 1 + 1 + 1 + \dots = \infty$

Therefore, we would expect:

 $\infty = 1 + \infty$

nat \simeq nat option

f = fn Zero => NONE | Succ n => SOME n f' = fn NONE => Zero | SOME n => Succ n

Image: A matrix

Binary Trees

```
datatype 'a tree
= Empty
| Node of 'a tree * 'a * 'a tree
```

Binary Trees

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

$$T(\alpha) \simeq \text{unit} + T(\alpha) \times \alpha \times T(\alpha)$$

 $\simeq \text{unit} + \alpha \times T(\alpha)^2$

Hype for Types

Algebraic Data Types

January 23, 2024

25 / 36

Binary Shrubs

```
datatype 'a shrub
= Leaf of 'a
| Node of 'a shrub * 'a shrub
```

Binary Shrubs

```
datatype 'a shrub
= Leaf of 'a
| Node of 'a shrub * 'a shrub
```

$$egin{aligned} \mathcal{S}(lpha) &\simeq lpha + \mathcal{S}(lpha) imes \mathcal{S}(lpha) \ &\simeq lpha + \mathcal{S}(lpha)^2 \end{aligned}$$

Hype for Types

Counting

How many binary shrubs are there?

3

イロト イヨト イヨト イヨト

Counting

How many binary shrubs are there?

$$S(\alpha) = \alpha + S(\alpha)^2$$

Hype for Types

2

ヨト・モラト

Counting

How many binary shrubs are there?

$$S(\alpha) = \alpha + S(\alpha)^2$$
$$0 = S(\alpha)^2 - S(\alpha) + \alpha$$

2

イロト イヨト イヨト

Counting

How many binary shrubs are there?

$$S(lpha) = lpha + S(lpha)^2$$

 $0 = S(lpha)^2 - S(lpha) + lpha$
 $S(lpha) = rac{1 - \sqrt{1 - 4lpha}}{2}$ (quadratic formula)

	Types

2

イロト イヨト イヨト

Counting

How many binary shrubs are there?

$$S(\alpha) = \alpha + S(\alpha)^{2}$$

$$0 = S(\alpha)^{2} - S(\alpha) + \alpha$$

$$S(\alpha) = \frac{1 - \sqrt{1 - 4\alpha}}{2} \qquad (\text{quadratic formula})$$

$$S(\alpha) = \alpha^{1} + \alpha^{2} + 2\alpha^{3} + 5\alpha^{4} + \ldots + \frac{1}{n} \binom{2n - 2}{n - 1} \alpha^{n} + \ldots$$
(Taylor series)

3

27 / 36

イロト イヨト イヨト イヨト

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} {\binom{2n-2}{n-1}} \alpha^n + \ldots$$

3

<ロト <問ト < 目と < 目と

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} {\binom{2n-2}{n-1}} \alpha^n + \ldots$$

• Each leaf has α choices for its value

∃ ► < ∃ ►</p>

э

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots$$

- Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count

	Types

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots$$

- Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots$$

- Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
\frac{1}{n}\binom{2n-2}{n-1} is the number of 'a shrubs of n nodes!
```

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots$$

- Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
\frac{1}{n}\binom{2n-2}{n-1} is the number of 'a shrubs of n nodes!
```

• This sequence is called the Catalan numbers

28 / 36

$$S(\alpha) = \alpha^1 + \alpha^2 + 2\alpha^3 + 5\alpha^4 + \ldots + \frac{1}{n} \binom{2n-2}{n-1} \alpha^n + \ldots$$

- Each leaf has α choices for its value
- Any 1 leaf shrub form would contribute α^1 to the count
- Any 4 leaf shrub form would contribute α^4 to the count

Revelation

```
\frac{1}{n}\binom{2n-2}{n-1} is the number of 'a shrubs of n nodes!
```

- This sequence is called the Catalan numbers
- This technique is called Generating Functions

haha type derivates go brrr

ype '		

2

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

	Types

2

・ロト ・四ト ・ヨト ・ヨト

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

be fo	

э

(日)

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

Our Plan

>:)

Hype for Types	Algebraic Data Types	January 23, 2024		30 / 36
	4		2	590

$$\frac{d}{d\alpha}\alpha^{3} = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)$$

Ξ.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

$$\frac{d}{d\alpha}\alpha^{3} = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)$$
$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

Ξ.

$$\frac{d}{d\alpha}\alpha^{3} = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)$$
$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
$$\alpha \times \alpha \times \alpha \quad \mapsto \qquad 3 \times (\alpha \times \alpha)$$

・ロト ・四ト ・ヨト ・ヨト 三日

$$\frac{d}{d\alpha}\alpha^{3} = \left(\frac{d}{d\alpha}\alpha \times \alpha \times \alpha\right) + \left(\alpha \times \frac{d}{d\alpha}\alpha \times \alpha\right) + \left(\alpha \times \alpha \times \frac{d}{d\alpha}\alpha\right)$$
$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
$$\alpha \times \alpha \times \alpha \quad \mapsto \qquad 3 \times (\alpha \times \alpha)$$

Differentiating a power "eats" a tuple slot, and tells you which element was removed.

	٠. •		5 0 A C
Hype for Types	Algebraic Data Types	January 23, 2024	31 / 36

Differentiating a List

Recall that:

$$a + ar + ar^2 + ar^3 + \dots = \frac{a}{1-r}$$

³What the hype is a negative type?

э

ヨト・イヨト

Differentiating a List

Recall that:

We have:³

$$a + ar + ar^{2} + ar^{3} + \dots = \frac{a}{1 - r}$$

$$\mathcal{L}(\alpha) = 1 + \alpha + \alpha^2 + \ldots \stackrel{?}{=} \frac{1}{1 - \alpha}$$

³What the hype is a negative type?

э

イロト イヨト イヨト

Differentiating a List

Recall that:

We have:³

$$a + ar + ar^{2} + ar^{3} + \dots = \frac{a}{1 - r}$$
$$L(\alpha) = 1 + \alpha + \alpha^{2} + \dots \stackrel{?}{=} \frac{1}{1 - \alpha}$$

$$\frac{d}{d\alpha}L(\alpha) = \frac{d}{d\alpha}\frac{1}{1-\alpha}$$
$$= \frac{1}{(1-\alpha)^2}$$
$$= \left(\frac{1}{1-\alpha}\right)^2$$
$$= L(\alpha)^2$$

³What the hype is a negative type?

Hype for Types

< □ > < 同 >

э

Tree for Two, and Two for Tree

We said:

$$T(\alpha) = 1 + \alpha T(\alpha)^2$$

Here we go again...

Hype	

2

・ロト ・四ト ・ヨト ・ヨト

Tree for Two, and Two for Tree

We said:

$$T(\alpha) = 1 + \alpha T(\alpha)^2$$

Here we go again...

$$\frac{d}{d\alpha}T(\alpha) = \frac{d}{d\alpha}1 + \frac{d}{d\alpha}\alpha T(\alpha)^2$$
$$= \alpha \times \frac{d}{d\alpha}T(\alpha)^2 + \frac{d}{d\alpha}\alpha \times T(\alpha)^2$$
$$= 2\alpha T(\alpha) \times \frac{d}{d\alpha}T(\alpha) + T(\alpha)^2$$
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2 \left(\frac{1}{1 - 2\alpha T(\alpha)}\right)$$
$$= T(\alpha)^2 L(2\alpha T(\alpha))$$

2

33 / 36

・ロト ・四ト ・ヨト ・ヨト

$$\frac{d}{d\alpha}\alpha^3 = 3\alpha^2$$
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^2$$
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2L(2\alpha T(\alpha))$$

3

イロト イヨト イヨト イヨト

$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^{2}$$
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^{2}L(2\alpha T(\alpha))$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

^ahttp://strictlypositive.org/diff.pdf

ype		

3

$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
 "punctured" tuple
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^{2}$$
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^{2}L(2\alpha T(\alpha))$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

^ahttp://strictlypositive.org/diff.pdf

	Types

3

34 / 36

・ 同下 ・ ヨト ・ ヨト

$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
 "punctured" tuple
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^{2}$$
 list zipper
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^{2}L(2\alpha T(\alpha))$$

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

^ahttp://strictlypositive.org/diff.pdf

	Types

3

$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
 "punctured" tuple
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^{2}$$
 list zipper
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^{2}L(2\alpha T(\alpha))$$
 tree zipper

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

^ahttp://strictlypositive.org/diff.pdf

	for	

3

34 / 36

ype '		

3

イロト イヨト イヨト イヨト

• Figured out the sizes of various types

⁴More on that later...

Hype for Types

э

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)

⁴More on that later...

- Figured out the sizes of various types
- Generalized our type theory to include *sum types* (and **void**)
- Considered *recursive types*⁴

⁴More on that later...

- Figured out the sizes of various types
- Generalized our type theory to include *sum types* (and **void**)
- Considered *recursive types*⁴
- Used type equations and generating functions to count objects

- Figured out the sizes of various types
- Generalized our type theory to include *sum types* (and **void**)
- Considered *recursive types*⁴
- Used type equations and generating functions to count objects
- Invented a type-level hole punch