
Compilation & Program Analysis

Hype for Types

February 27, 2024

Hype for Types Compilation & Program Analysis February 27, 2024 1 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

Why compile?

When we write code, we want to run the code.

Common strategy for running the code: interpreter and compiler.

We could write a simple “expression evaluator”. However, our code
would be very slow.

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code.

Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another.

Hype for Types Compilation & Program Analysis February 27, 2024 2 / 27

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Front End

1 Parsing

2 Elaboration (de-sugaring)

3 Typechecking (disallow malformed programs)

Hype for Types Compilation & Program Analysis February 27, 2024 3 / 27

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Front End

1 Parsing

2 Elaboration (de-sugaring)

3 Typechecking (disallow malformed programs)

Hype for Types Compilation & Program Analysis February 27, 2024 3 / 27

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Front End

1 Parsing

2 Elaboration (de-sugaring)

3 Typechecking (disallow malformed programs)

Hype for Types Compilation & Program Analysis February 27, 2024 3 / 27

How to compile?

Rather than going straight to Assembly, we’ll want to use intermediate
languages, composing smaller compiler phases.

Front End

1 Parsing

2 Elaboration (de-sugaring)

3 Typechecking (disallow malformed programs)

Hype for Types Compilation & Program Analysis February 27, 2024 3 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations

▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations

▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations

▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations

▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs

▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis

▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

How to compile?

Middle/Back End

4 CPS Conversion

5 Hoisting

6 Memory Allocation

7 Analysis/Optimizations
▶ Control Flow Graphs
▶ Dataflow Analysis
▶ Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation & Program Analysis February 27, 2024 4 / 27

Middle End

Hype for Types Compilation & Program Analysis February 27, 2024 5 / 27

Middle End - Hoisting

4 CPS Conversion

5 Hoisting

6 Memory Allocation

Move local functions to top level. But what to do with local variables?

let outer (x : int) =

let inner (y : int) = x + y in

inner

Multiple approaches!

Hype for Types Compilation & Program Analysis February 27, 2024 6 / 27

Middle End - Hoisting

let outer (x : int) : int -> int =

let inner (y : int) = x + y

inner

Straightforward solution: Partial Application + Lambda Lifting

1 Turn local variables into function variables

2 Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner , x)

pApp (pApp (inner, 5), 6)==>* inner 5 6

Hype for Types Compilation & Program Analysis February 27, 2024 7 / 27

Middle End - Hoisting

let outer (x : int) : int -> int =

let inner (y : int) = x + y

inner

Straightforward solution: Partial Application + Lambda Lifting

1 Turn local variables into function variables

2 Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner , x)

pApp (pApp (inner, 5), 6)==>* inner 5 6

Hype for Types Compilation & Program Analysis February 27, 2024 7 / 27

Middle End - Memory Allocation

4 CPS Conversion

5 Hoisting

6 Memory Allocation

Create memory representations of program values:

Primitives (ex. int)

Functions (are values!)

Datatypes

Hype for Types Compilation & Program Analysis February 27, 2024 8 / 27

Memory Allocation - Background

Stack: primitives, small program values

Heap: larger, more complicated values (ex. non-constant constructors,
closures, records)

When we store something on the heap, the memory often looks something
like this:

header payload

Hype for Types Compilation & Program Analysis February 27, 2024 9 / 27

Memory Allocation - ADTs

Problem

How are Algebraic Datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0

Orange 1

Pear 2

Kiwi 3

Hype for Types Compilation & Program Analysis February 27, 2024 10 / 27

Memory Allocation - ADTs

Problem

How are Algebraic Datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0

Orange 1

Pear 2

Kiwi 3

Hype for Types Compilation & Program Analysis February 27, 2024 10 / 27

Memory Allocation - ADTs

Problem

How are Algebraic Datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0

Orange 1

Pear 2

Kiwi 3

Hype for Types Compilation & Program Analysis February 27, 2024 10 / 27

Memory Allocation - ADTs

Problem

How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

The arguments could be large, so let’s allocate these on the heap:

size of block tag payload

header

The non-parameterized constructors will remain integers, while the
parameterized constructors will be pointers to memory on the heap.

Hype for Types Compilation & Program Analysis February 27, 2024 11 / 27

Memory Allocation - ADTs

Problem

How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

The arguments could be large, so let’s allocate these on the heap:

size of block tag payload

header

The non-parameterized constructors will remain integers, while the
parameterized constructors will be pointers to memory on the heap.

Hype for Types Compilation & Program Analysis February 27, 2024 11 / 27

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0

Orange 0

Pear 1

Kiwi 1

Question

Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation & Program Analysis February 27, 2024 12 / 27

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0

Orange 0

Pear 1

Kiwi 1

Question

Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation & Program Analysis February 27, 2024 12 / 27

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0

Orange 0

Pear 1

Kiwi 1

Question

Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation & Program Analysis February 27, 2024 12 / 27

Memory Allocation - Lists

type list = Nil | Cons of int * list

let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question

How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation & Program Analysis February 27, 2024 13 / 27

Memory Allocation - Lists

type list = Nil | Cons of int * list

let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question

How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation & Program Analysis February 27, 2024 13 / 27

Memory Allocation - Lists

type list = Nil | Cons of int * list

let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question

How would mylist be represented in memory?

A linked-list!

Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation & Program Analysis February 27, 2024 13 / 27

Memory Allocation - Lists

type list = Nil | Cons of int * list

let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question

How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.

At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation & Program Analysis February 27, 2024 13 / 27

Memory Allocation - Lists

type list = Nil | Cons of int * list

let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question

How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation & Program Analysis February 27, 2024 13 / 27

Memory Allocation - Closures

Question

How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.
Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation & Program Analysis February 27, 2024 14 / 27

Memory Allocation - Closures

Question

How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.

Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation & Program Analysis February 27, 2024 14 / 27

Memory Allocation - Closures

Question

How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.
Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation & Program Analysis February 27, 2024 14 / 27

Middle End - CPS

4 CPS Conversion

5 Hoisting

6 Memory Allocation

(deep breath) Buckle up

Hype for Types Compilation & Program Analysis February 27, 2024 15 / 27

CPS Conversion

Hype for Types Compilation & Program Analysis February 27, 2024 16 / 27

Why CPS?

CPS conversion rewrites functions to ensure every function call is a tail call

Main Idea

CPS makes control flow explicit - everything is represented as a jump to
the next continuation.

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There’s no “stack”!)

Hype for Types Compilation & Program Analysis February 27, 2024 17 / 27

Remember continuations?

signature CONT =

sig

type ’a cont

val letcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

val catch : (’a -> void) -> ’a cont

end

Γ, k : τ cont ⊢ e : τ

Γ ⊢ letcc k in e : τ

Γ ⊢ k : τ cont Γ ⊢ e : τ

Γ ⊢ throw k e : τ ′

Hype for Types Compilation & Program Analysis February 27, 2024 18 / 27

Remember continuations?

signature CONT =

sig

type ’a cont

val letcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

val catch : (’a -> void) -> ’a cont

end

Γ, k : τ cont ⊢ e : τ

Γ ⊢ letcc k in e : τ

Γ ⊢ k : τ cont Γ ⊢ e : τ

Γ ⊢ throw k e : τ ′

Hype for Types Compilation & Program Analysis February 27, 2024 18 / 27

CPS Translation

Function Translation

τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is ϕ1 ⊃ ϕ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(ϕ1 ∧ ¬ϕ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation & Program Analysis February 27, 2024 19 / 27

CPS Translation

Function Translation

τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is ϕ1 ⊃ ϕ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(ϕ1 ∧ ¬ϕ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation & Program Analysis February 27, 2024 19 / 27

CPS Translation

Function Translation

τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is ϕ1 ⊃ ϕ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(ϕ1 ∧ ¬ϕ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation & Program Analysis February 27, 2024 19 / 27

CPS Translation

Function Translation

τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is ϕ1 ⊃ ϕ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(ϕ1 ∧ ¬ϕ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation & Program Analysis February 27, 2024 19 / 27

CPS Translation

Function Translation

τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is ϕ1 ⊃ ϕ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(ϕ1 ∧ ¬ϕ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation & Program Analysis February 27, 2024 19 / 27

Different IRs

CPS λ-calculus SSA

Inline expansion :) :(:(

Closure :) :) :(

Dataflow analysis :| :(:)

Register allocation :) :(:)

Vectorization :| :(:|

Hype for Types Compilation & Program Analysis February 27, 2024 20 / 27

Program Analysis

Hype for Types Compilation & Program Analysis February 27, 2024 21 / 27

Why Analyze Programs?

When we write code, we write them inefficient & buggy!

We could hand optimize & run the program and debug...

But some optimizations/bugs can be done/caught statically!

void isbad() {

int arr [150];

int matey = 1;

// index < 0; Bug!!

arr[matey - 2];

//deadcode , so we can remove this block!

if(false) {

//...a lot of code ...

}

Hype for Types Compilation & Program Analysis February 27, 2024 22 / 27

Why Analyze Programs?

When we write code, we write them inefficient & buggy!

We could hand optimize & run the program and debug...

But some optimizations/bugs can be done/caught statically!

void isbad() {

int arr [150];

int matey = 1;

// index < 0; Bug!!

arr[matey - 2];

//deadcode , so we can remove this block!

if(false) {

//...a lot of code ...

}

Hype for Types Compilation & Program Analysis February 27, 2024 22 / 27

Dataflow

Many program analysis problems are dataflow problems

Dataflow is a problem where a few rules describe a relation between
the variables in the construct and its neighbors

L1: x = 0;

L2: y = 150 * 150;

L3: z = 15;

L4: z = z + x + 1;

L5: return x + z;

To analyze which variable is not used, we’ll define a few dataflow rules

Hype for Types Compilation & Program Analysis February 27, 2024 23 / 27

Dataflow

Many program analysis problems are dataflow problems

Dataflow is a problem where a few rules describe a relation between
the variables in the construct and its neighbors

L1: x = 0;

L2: y = 150 * 150;

L3: z = 15;

L4: z = z + x + 1;

L5: return x + z;

To analyze which variable is not used, we’ll define a few dataflow rules

Hype for Types Compilation & Program Analysis February 27, 2024 23 / 27

Neededness

L : return x

nec(L,x)

nec(L,x)

needed(L,x)

use(L,y) def(L,x) needed(L + 1,x)

needed(L,y)

L1: x = 0; // needed:

L2: y = 150 * 150; // needed: x

L3: z = 15; // needed: x

L4: z = z + x + 1; // needed: x,z

L5: return x + z; // needed: x,z

Question

What about loops? How does our algorithm change?

Hype for Types Compilation & Program Analysis February 27, 2024 24 / 27

Neededness

L : return x

nec(L,x)

nec(L,x)

needed(L,x)

use(L,y) def(L,x) needed(L + 1,x)

needed(L,y)

L1: x = 0; // needed:

L2: y = 150 * 150; // needed: x

L3: z = 15; // needed: x

L4: z = z + x + 1; // needed: x,z

L5: return x + z; // needed: x,z

Question

What about loops? How does our algorithm change?

Hype for Types Compilation & Program Analysis February 27, 2024 24 / 27

Conclusion

Hype for Types Compilation & Program Analysis February 27, 2024 25 / 27

Summary

Compilers are “language translators”, and often compositions of
smaller “language translators”.

Types guide our thinking when we implement the translations!
▶ Each language is “real”, complete with types and an evaluation

strategy for all well-typed programs.
▶ Bonus: we can do optimization at any point without worrying about

special “invariants”!
▶ Easier to debug, too. If output code doesn’t typecheck, it’s a bug.

By thinking compositionally, we slowly transform high-level code into
assembly.

Hype for Types Compilation & Program Analysis February 27, 2024 26 / 27

There’s Plenty More!

Writing a compiler is very hard, but rewarding (because compilers are
useful, unlike PL theory).
If this lecture seems cool, consider taking 15-411 - Compiler Design. Also
beg Karl to teach take 15-417 - HOT Compilation!

Hype for Types Compilation & Program Analysis February 27, 2024 27 / 27

	Middle End
	CPS Conversion
	Program Analysis
	Conclusion

