

Introduction and Lambda Calculus

Hype for Types

January 13, 2025

Introduction

Welcome to Hype for Types!

- Instructors:

- ▶ Zach Battleman (zbattlem)
- ▶ Kiera O'Flynn (koflynn)
- ▶ Sonya Simkin (ssimkin)
- ▶ Leon Lu (lianglu)

- Attendance

- ▶ In general, you have to come to lecture to pass
- ▶ Let us know if you need to miss a week

- Homework

- ▶ Every lecture will have an associated homework
- ▶ Graded on effort (*not* correctness)
- ▶ If you spend more than an hour, please stop¹

¹Unless you're having fun!

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
 - ▶ If you don't have this and feel really lost, talk to us after class (and a 150 head TA will bring you up to speed)

Motivation

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- `1 + "hello"`
- `fun f x = f x`

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- `1 + "hello"`
- `fun f x = f x`
- `malloc(sizeof(int)); return;`

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- `1 + "hello"`
- `fun f x = f x`
- `malloc(sizeof(int)); return;`
- `free(A); free(A);`

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- `1 + "hello"`
- `fun f x = f x`
- `malloc(sizeof(int)); return;`
- `free(A); free(A);`
- `A[len(A)]`

<https://xkcd.com/327/>

Programming is Hard

There are many common classes of mistakes/bugs/errors in code:

- `1 + "hello"`
- `fun f x = f x`
- `malloc(sizeof(int)); return;`
- `free(A); free(A);`
- `A[len(A)]`
- `@requires is_sorted(A)`

<https://xkcd.com/327/>

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

² Foreshadowing: “a literary device in which a writer gives an advance hint of what is to come later in the story.” *Wikipedia*, “Foreshadowing,” [retrieved 30 Aug 2022](#) ↗ ↘ ↙

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

² Foreshadowing: “a literary device in which a writer gives an advance hint of what is to come later in the story.” *Wikipedia*, “Foreshadowing,” [retrieved 30 Aug 2022](#) ↗ ↘ ↙ ↘

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

Guiding Question

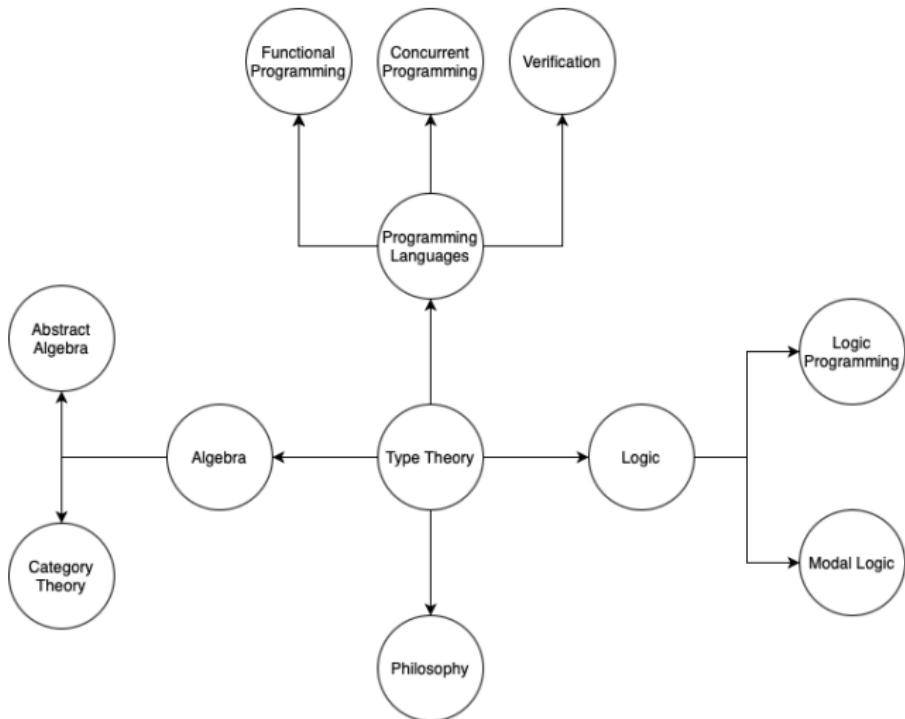
How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?²

² Foreshadowing: “a literary device in which a writer gives an advance hint of what is to come later in the story.” *Wikipedia*, “Foreshadowing,” [retrieved 30 Aug 2022](#) ↗ ↘ ↙

Type Theory at Large



Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breadth

Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breadth
- We DO expect you to have fun
- We DO hope to spark your interest in PL theory and start pursuing coursework and/or research in adjacent areas after taking this course
- We DO want you to learn about different fascinating aspects of types that you would otherwise take advanced courses and/or read complicated academic papers to understand

Course Credit

- 3 unit, P/F
- For undergraduate, count towards 360 total units graduation requirement
- For MSCS, count towards 12 units “MSCS elective units”

Caveat

You will see a lot of weird symbols in this class, please don't be intimated.
We especially love λ .

Lambda Calculus

Building a tiny language

The *simply-typed lambda calculus* is simple. It only has four features³:

- Unit (“empty tuples”)
- Booleans
- Tuples
- Functions

³which is a subset of Standard ML

Building a tiny language

The *simply-typed lambda calculus* is simple. It only has four features³:

- Unit (“empty tuples”)
- Booleans
- Tuples
- Functions

Goal

To use STLC as a tool to study how type checker works.

³which is a subset of Standard ML

Expressions

We represent our expressions using a *grammar*:

$e ::=$	x	variable
	$\langle \rangle$	unit
	false	false boolean
	true	true boolean
	if e_1 then e_2 else e_3	boolean case analysis
	$\langle e_1, e_2 \rangle$	tuple
	fst (e)	first tuple element
	snd (e)	second tuple element
	$\lambda x : \tau. e$	function abstraction (lambda)
	$e_1 e_2$	function application

Types

Similarly, we define our types as follows:

$$\begin{array}{lcl} \tau & ::= & \mathbf{unit} \\ & | & \mathbf{bool} \\ & | & \tau_1 \times \tau_2 \\ & | & \tau_1 \rightarrow \tau_2 \end{array}$$

Types

Similarly, we define our types as follows:

$$\begin{array}{lcl} \tau & ::= & \mathbf{unit} \\ & | & \mathbf{bool} \\ & | & \tau_1 \times \tau_2 \\ & | & \tau_1 \rightarrow \tau_2 \end{array}$$

Million-dollar Question

How do we check if $e : \tau$?

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

$$\frac{\text{premise}_1 \quad \text{premise}_2 \quad \dots}{\text{conclusion}}$$

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

$$\frac{\text{premise}_1 \quad \text{premise}_2 \quad \dots}{\text{conclusion}}$$

For example:

$$\frac{\text{you are here} \quad \text{you are hyped}}{\text{you are hyped for types}} \qquad \frac{\text{functions are values}}{\text{functions are values}}$$
$$\frac{\text{it's raining} \quad x \text{ is outside}}{x \text{ is getting wet}} \qquad \frac{\text{Socrates is a man} \quad \text{All men are mortal}}{\text{Socrates is mortal}}$$
$$\frac{n \text{ is a number}}{n + 1 \text{ is a number}} \qquad \frac{f \text{ total} \quad x \text{ valuable}}{f \ x \text{ valuable}}$$

Typing Rules: First Attempt

Consider the judgement $e : \tau$ (“ e has type τ ”). Let’s try to express some simple typing rules.

$$\frac{}{\langle \rangle : \mathbf{unit}}$$

$$\frac{}{\mathbf{false} : \mathbf{bool}}$$

$$\frac{}{\mathbf{true} : \mathbf{bool}}$$

$$\frac{e_1 : \mathbf{bool} \quad e_2 : \tau \quad e_3 : \tau}{\mathbf{if} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 : \tau}$$

$$\frac{e_1 : \tau_1 \quad e_2 : \tau_2}{\langle e_1, e_2 \rangle : \tau_1 \times \tau_2}$$

$$\frac{e : \tau_1 \times \tau_2}{\mathbf{fst}(e) : \tau_1}$$

$$\frac{e : \tau_1 \times \tau_2}{\mathbf{snd}(e) : \tau_2}$$

Typing Rules: First Attempt

Consider the judgement $e : \tau$ ("e has type τ "). Let's try to express some simple typing rules.

$$\frac{}{\langle \rangle : \mathbf{unit}}$$

$$\frac{}{\mathbf{false} : \mathbf{bool}}$$

$$\frac{}{\mathbf{true} : \mathbf{bool}}$$

$$\frac{e_1 : \mathbf{bool} \quad e_2 : \tau \quad e_3 : \tau}{\mathbf{if} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 : \tau}$$

$$\frac{e_1 : \tau_1 \quad e_2 : \tau_2}{\langle e_1, e_2 \rangle : \tau_1 \times \tau_2}$$

$$\frac{e : \tau_1 \times \tau_2}{\mathbf{fst}(e) : \tau_1}$$

$$\frac{e : \tau_1 \times \tau_2}{\mathbf{snd}(e) : \tau_2}$$

Question

How do we write rules for functions?

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1 : \tau_1 \rightarrow \tau_2 \quad e_2 : \tau_1}{e_1 \ e_2 : \tau_2}$$

Looks good so far...

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1 : \tau_1 \rightarrow \tau_2 \quad e_2 : \tau_1}{e_1 \ e_2 : \tau_2}$$

Looks good so far...

$$\frac{e : \tau_2 \text{ (?)}}{(\lambda x : \tau_1. \ e) : \tau_1 \rightarrow \tau_2}$$

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1 : \tau_1 \rightarrow \tau_2 \quad e_2 : \tau_1}{e_1 \ e_2 : \tau_2}$$

Looks good so far...

$$\frac{e : \tau_2 \text{ (?)}}{(\lambda x : \tau_1. \ e) : \tau_1 \rightarrow \tau_2}$$

Key Idea

Expressions only have types *given a context!*

Contexts

Intuition

If, given $x : \tau_1$, we know $e : \tau_2$, then $(\lambda x : \tau_1. e) : \tau_1 \rightarrow \tau_2$.

Therefore, we need a context (denoted Γ) which associates types with variables.

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. e) : \tau_1 \rightarrow \tau_2}$$

What types does some variable x have? It depends on the previous code!

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau}$$

All the rules!

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \text{ (VAR)}$$

$$\frac{}{\Gamma \vdash \langle \rangle : \mathbf{unit}} \text{ (UNIT)}$$

$$\frac{}{\Gamma \vdash \mathbf{false} : \mathbf{bool}} \text{ (FALSE)}$$

$$\frac{}{\Gamma \vdash \mathbf{true} : \mathbf{bool}} \text{ (TRUE)}$$

$$\frac{\Gamma \vdash e_1 : \mathbf{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \mathbf{if } e_1 \mathbf{ then } e_2 \mathbf{ else } e_3 : \tau} \text{ (IF)}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2} \text{ (TUP)}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathbf{fst}(e) : \tau_1} \text{ (FST)}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathbf{snd}(e) : \tau_2} \text{ (SND)}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. e) : \tau_1 \rightarrow \tau_2} \text{ (ABS)}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \ e_2 : \tau_2} \text{ (APP)}$$

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}$$

by using the rules.

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}$$

by using the rules.

$$\frac{\frac{\frac{x : \mathbf{unit} \in \cdot, x : \mathbf{unit}}{\cdot, x : \mathbf{unit} \vdash x : \mathbf{unit}} \text{ (VAR)} \quad \frac{\cdot, x : \mathbf{unit} \vdash \mathbf{true} : \mathbf{bool}}{\cdot, x : \mathbf{unit} \vdash \langle x, \mathbf{true} \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (TRUE)}}{\cdot, x : \mathbf{unit} \vdash \langle x, \mathbf{true} \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (TUP)} \quad \frac{\cdot \vdash \langle \rangle : \mathbf{unit}}{\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (UNIT)}}{\cdot \vdash \lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle : \mathbf{unit} \rightarrow \mathbf{unit} \times \mathbf{bool}} \text{ (ABS)} \quad \frac{}{\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (APP)}$$

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}$$

by using the rules.

$$\frac{\frac{\frac{x : \mathbf{unit} \in \cdot, x : \mathbf{unit}}{\cdot, x : \mathbf{unit} \vdash x : \mathbf{unit}} \text{ (VAR)} \quad \frac{\cdot, x : \mathbf{unit} \vdash \mathbf{true} : \mathbf{bool}}{\cdot, x : \mathbf{unit} \vdash \langle x, \mathbf{true} \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (TRUE)}}{\cdot, x : \mathbf{unit} \vdash \langle x, \mathbf{true} \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (TUP)} \quad \frac{\cdot \vdash \langle \rangle : \mathbf{unit}}{\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (UNIT)}}{\cdot \vdash \lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle : \mathbf{unit} \rightarrow \mathbf{unit} \times \mathbf{bool}} \text{ (ABS)} \quad \frac{\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}}{\cdot \vdash (\lambda x : \mathbf{unit}. \langle x, \mathbf{true} \rangle) \langle \rangle : \mathbf{unit} \times \mathbf{bool}} \text{ (APP)}$$

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Get Hype.

The Future is Bright

- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?