Compilation

Hype for Types

February 24, 2025

=] & = E nae
Hype for Types Compilation

Why compile?

@ When we write code, we want to run the code

o =3 = E Dae
Hype for Types Compilation

Why compile?

@ When we write code, we want to run the code

@ Common strategy for running the code: interpreter and compiler

Hype for Types Compilation February 24, 2025 2/23

Why compile?

@ When we write code, we want to run the code
@ Common strategy for running the code: interpreter and compiler

@ We could write a simple “expression evaluator,” however our code
would be very slow

Hype for Types Compilation February 24, 2025 2/23

Why compile?

@ When we write code, we want to run the code
@ Common strategy for running the code: interpreter and compiler

@ We could write a simple “expression evaluator,” however our code
would be very slow

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code

Hype for Types Compilation February 24, 2025 2/23

Why compile?

When we write code, we want to run the code

Common strategy for running the code: interpreter and compiler

We could write a simple “expression evaluator,” however our code
would be very slow

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code

@ Then, we can take advantage of a computer’s efficient hardware!

Hype for Types Compilation February 24, 2025 2/23

Why compile?

@ When we write code, we want to run the code
@ Common strategy for running the code: interpreter and compiler

@ We could write a simple “expression evaluator,” however our code
would be very slow

o Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code

@ Then, we can take advantage of a computer’s efficient hardware!

Main Idea

A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2/23

How to compile?

Rather than going straight to assembly, we'll want to use intermediate
languages, composing smaller compiler phases:

Hype for Types Compilation February 24, 2025 3/23

How to compile?

Rather than going straight to assembly, we'll want to use intermediate
languages, composing smaller compiler phases:

Front End
@ Parsing

February 24, 2025 3/23

How to compile?

Rather than going straight to assembly, we'll want to use intermediate
languages, composing smaller compiler phases:
Front End

@ Parsing

@ Elaboration (de-sugaring)

Hype for Types Compilation February 24, 2025 3/23

How to compile?

Rather than going straight to assembly, we'll want to use intermediate
languages, composing smaller compiler phases:
Front End

@ Parsing

@ Elaboration (de-sugaring)

© Typechecking (disallow malformed programs)

Hype for Types Compilation February 24, 2025 3/23

How to compile?

Middle/Back End

@ CPS Conversion

'For more information, take 15-411 (only covers 1-3, 7-10) = = = = 9ac

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations
» Control Flow Graphs

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations

» Control Flow Graphs
» Dataflow Analysis

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations
» Control Flow Graphs

» Dataflow Analysis
» Often involves making a program functional (SSA form)

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations
» Control Flow Graphs

» Dataflow Analysis
» Often involves making a program functional (SSA form)

© Register Allocation

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

How to compile?

Middle/Back End
@ CPS Conversion
© Hoisting
@ Memory Allocation
@ Analysis/Optimizations
» Control Flow Graphs

» Dataflow Analysis
» Often involves making a program functional (SSA form)

© Register Allocation

@ Instruction Selection (assembly)

'For more information, take 15-411 (only covers 1-3, 7-10)

Hype for Types Compilation February 24, 2025 4/23

Middle End

=] & = E nae
Hype for Types Compilation

Middle End - Hoisting

@ CPS Conversion
© Hoisting
@ Memory Allocation

Move local functions to top level. But what to do with local variables?

let outer (x : int) =
let inner (y : int) = x + y in
inner

Multiple approaches!

Hype for Types Compilation February 24, 2025 6/23

Middle End - Hoisting

let outer (x : int) : int -> int =
let inner (y : int) = x + y
inner

Straightforward solution: Partial Application 4+ Lambda Lifting
© Turn local variables into function variables

@ Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner, x)

Hype for Types Compilation February 24, 2025 7/23

Middle End - Hoisting

let outer (x : int) : int -> int =
let inner (y : int) = x + y
inner

Straightforward solution: Partial Application 4+ Lambda Lifting
© Turn local variables into function variables

@ Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner, x)

pApp (pApp (inner, 5), 6)==>* inner 5 6

Hype for Types Compilation February 24, 2025 7/23

Middle End - Memory Allocation

@ CPS Conversion
© Hoisting
O Memory Allocation

Create memory representations of program values:
@ Primitives (ex. int)
e Functions (are values!)

o Datatypes

Hype for Types Compilation February 24, 2025 8/23

Memory Allocation - Background

Stack: primitives, small program values

Heap: larger, more complicated values (ex. non-constant constructors,
closures, records)

When we store something on the heap, the memory often looks something
like this:

header | payload

Hype for Types Compilation February 24, 2025 9/23

Memory Allocation - ADTs

Problem

How are algebraic datatypes in OCaml represented in memory?

o =3 = E Dae
Hype for Types Compilation

Memory Allocation - ADTs
Problem

type t = Apple | Orange | Pear | Kiwi

=] & = E nagc
Hype for Types Compilation

How are algebraic datatypes in OCaml represented in memory?

Memory Allocation - ADTs

Problem
How are algebraic datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0
Orange | 1
Pear 2
Kiwi 3

Hype for Types Compilation February 24, 2025

10/23

Memory Allocation - ADTs

Problem

How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

=] & = E nae
Hype for Types Compilation

Memory Allocation - ADTs

Problem

How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

The arguments could be large, so let's allocate these on the heap:

size of block ‘ tag

payload ‘

header

The non-parameterized constructors will remain integers, while the

parameterized constructors will be pointers to memory on the heap.

Hype for Types Compilation February 24, 2025

11/23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple
Orange
Pear
Kiwi

k=l =]

Hype for Types Compilation February 24, 2025 12/23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple
Orange
Pear
Kiwi

k=l =]

Question J

Why would it make sense to have separate numberings?

Hype for Types Compilation February 24, 2025 12/23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple
Orange
Pear
Kiwi

k=l =]

Why would it make sense to have separate numberings?

Question J

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation February 24, 2025 12/23

Memory Allocation - Lists
type list = Nil | Comns of int * list

let mylist = Cons (1, Cons (2, Comns (3, Nil)))

o =3 = E Dae
Hype for Types Compilation

Memory Allocation - Lists

type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Comns (3, Nil)))

Question

How would mylist be represented in memory? J

o F = E DAC
Hype for Types Compilation

it
«

/E‘n
€

Memory Allocation - Lists

type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Comns (3, Nil)))

Question

How would mylist be represented in memory? J

A linked-list!

Hype for Types Compilation February 24, 2025 13/23

Memory Allocation - Lists

type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Comns (3, Nil)))

Question

How would mylist be represented in memory? J

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.

Hype for Types Compilation February 24, 2025 13/23

Memory Allocation - Lists

type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Comns (3, Nil)))

Question

How would mylist be represented in memory? J

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =

Nil

| One of int

| Two of int * int

| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13/23

Memory Allocation - Closures

Question

How should we represent closures?

=] & = E nae
Hype for Types Compilation

Memory Allocation - Closures

Question

How should we represent closures? J

After lambda-lifting, all function bodies are top-level functions.

Hype for Types Compilation February 24, 2025 14 /23

Memory Allocation - Closures

Question

How should we represent closures? J

After lambda-lifting, all function bodies are top-level functions.
Function constants = function pointers

Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation February 24, 2025 14 /23

Middle End - CPS

@ CPS Conversion
© Hoisting

@ Memory Allocation
(deep breath) Buckle up

=] & = E DAl
Hype for Types Compilation

CPS Conversion

=] & = E nae
Hype for Types Compilation

Why CPS?

CPS conversion rewrites functions to ensure every function call is a tail call

Main Idea
CPS makes control flow explicit - everything is represented as a jump to
the next continuation.

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There's no “stack”!)

Hype for Types Compilation February 24, 2025 17/23

Remember continuations?

signature CONT =
sig
type

'a cont
val letcc

val throw

('a cont -> 'a) -> 'a
'a cont -> 'a -> 'b

val catch ('a -> void) ->

end

'a cont

o =3 = E Dae
Hype for Types Compilation

Remember continuations?

signature CONT =
sig
type 'a cont
val letcc : ('a cont -> 'a) -> 'a
val throw : 'a cont -> 'a -> 'b
val catch : ('a -> void) -> 'a cont
end

[k:7 contkFe:T
[Fletcc k in e: T

~k:7 cont Fe:T
I+ throw ke: 7'

Hype for Types Compilation February 24, 2025 18/23

CPS Translation
Function Translation

71 — T2 becomes (71 x (72 cont)) cont

=] & = E nae
Hype for Types Compilation

CPS Translation

Function Translation

T1 — T2 becomes (71 x (72 cont)) cont J

Logically 71 — 72 is ¢1 D ¢». Since continuation corresponds to classical
logic, this is equivalent to =(¢1 A —¢2), which is (71 x (72 cont)) cont.

Hype for Types Compilation February 24, 2025 19/23

CPS Translation

Function Translation
T1 — T2 becomes (71 x (72 cont)) cont J

Logically 71 — 72 is ¢1 D ¢». Since continuation corresponds to classical
logic, this is equivalent to =(¢1 A —¢2), which is (71 x (72 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Hype for Types Compilation February 24, 2025 19/23

CPS Translation

Function Translation
T1 — T2 becomes (71 x (72 cont)) cont J

Logically 71 — 72 is ¢1 D ¢». Since continuation corresponds to classical
logic, this is equivalent to =(¢1 A —¢2), which is (71 x (72 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:

val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

Hype for Types Compilation February 24, 2025 19/23

CPS Translation

Function Translation
71 — T2 becomes (71 x (12 cont)) cont J

Logically 71 — 72 is ¢1 D ¢». Since continuation corresponds to classical
logic, this is equivalent to =(¢1 A —¢2), which is (71 x (72 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call £:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19/23

Different IRs

PS

A-calculus

Inline expansion

Closure

Dataflow analysis

Register allocation

Vectorization

||~~~ |—~

— [~~~ |~ —~

Hype for Types Compilation

February 24, 2025

20/23

Conclusion

=] & = E nae
Hype for Types Compilation

Summary

@ Compilers are “language translators,” and often compositions of
smaller “language translators.”
@ Types guide our thinking when we implement the translations!
» Each language is “real,” complete with types and an evaluation
strategy for all well-typed programs.
» Bonus: we can do optimization at any point without worrying about
special “invariants”!
» Easier to debug, too. If output code doesn't typecheck, it's a bug.
@ By thinking compositionally, we slowly transform high-level code into
assembly.

Hype for Types Compilation February 24, 2025 22/23

There's Plenty More!

Writing a compiler is very hard, but rewarding (because compilers are
useful, unlike PL theory).

If this lecture seems cool, consider taking 15-411 - Compiler Design. Also
take 15-417 - HOT Compilation!?

2Frank is teaching it this semester! Yippee!

Hype for Types Compilation

February 24, 2025 23/23

	Middle End
	CPS Conversion
	Conclusion

