
Compilation

Hype for Types

February 24, 2025

Hype for Types Compilation February 24, 2025 1 / 23

Why compile?

When we write code, we want to run the code

Common strategy for running the code: interpreter and compiler
We could write a simple “expression evaluator,” however our code
would be very slow
Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code
Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

Why compile?

When we write code, we want to run the code
Common strategy for running the code: interpreter and compiler

We could write a simple “expression evaluator,” however our code
would be very slow
Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code
Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

Why compile?

When we write code, we want to run the code
Common strategy for running the code: interpreter and compiler
We could write a simple “expression evaluator,” however our code
would be very slow

Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code
Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

Why compile?

When we write code, we want to run the code
Common strategy for running the code: interpreter and compiler
We could write a simple “expression evaluator,” however our code
would be very slow
Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code

Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

Why compile?

When we write code, we want to run the code
Common strategy for running the code: interpreter and compiler
We could write a simple “expression evaluator,” however our code
would be very slow
Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code
Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

Why compile?

When we write code, we want to run the code
Common strategy for running the code: interpreter and compiler
We could write a simple “expression evaluator,” however our code
would be very slow
Instead, we want to “translate” our (high-level) functional code to
(low-level) assembly code
Then, we can take advantage of a computer’s efficient hardware!

Main Idea
A compiler is simply a translator from one programming language to
another

Hype for Types Compilation February 24, 2025 2 / 23

How to compile?

Rather than going straight to assembly, we’ll want to use intermediate
languages, composing smaller compiler phases:

Front End

1 Parsing
2 Elaboration (de-sugaring)
3 Typechecking (disallow malformed programs)

Hype for Types Compilation February 24, 2025 3 / 23

How to compile?

Rather than going straight to assembly, we’ll want to use intermediate
languages, composing smaller compiler phases:

Front End
1 Parsing

2 Elaboration (de-sugaring)
3 Typechecking (disallow malformed programs)

Hype for Types Compilation February 24, 2025 3 / 23

How to compile?

Rather than going straight to assembly, we’ll want to use intermediate
languages, composing smaller compiler phases:

Front End
1 Parsing
2 Elaboration (de-sugaring)

3 Typechecking (disallow malformed programs)

Hype for Types Compilation February 24, 2025 3 / 23

How to compile?

Rather than going straight to assembly, we’ll want to use intermediate
languages, composing smaller compiler phases:

Front End
1 Parsing
2 Elaboration (de-sugaring)
3 Typechecking (disallow malformed programs)

Hype for Types Compilation February 24, 2025 3 / 23

How to compile?

Middle/Back End
4 CPS Conversion

5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting

6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation

7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs

I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis

I Often involves making a program functional (SSA form)
8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation

9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

How to compile?

Middle/Back End
4 CPS Conversion
5 Hoisting
6 Memory Allocation
7 Analysis/Optimizations

I Control Flow Graphs
I Dataflow Analysis
I Often involves making a program functional (SSA form)

8 Register Allocation
9 Instruction Selection (assembly)

1For more information, take 15-411 (only covers 1-3, 7-10)
Hype for Types Compilation February 24, 2025 4 / 23

Middle End

Hype for Types Compilation February 24, 2025 5 / 23

Middle End - Hoisting

4 CPS Conversion
5 Hoisting
6 Memory Allocation

Move local functions to top level. But what to do with local variables?
let outer (x : int) =

let inner (y : int) = x + y in
inner

Multiple approaches!

Hype for Types Compilation February 24, 2025 6 / 23

Middle End - Hoisting

let outer (x : int) : int -> int =
let inner (y : int) = x + y
inner

Straightforward solution: Partial Application + Lambda Lifting
1 Turn local variables into function variables
2 Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner, x)

pApp (pApp (inner, 5), 6)==>* inner 5 6

Hype for Types Compilation February 24, 2025 7 / 23

Middle End - Hoisting

let outer (x : int) : int -> int =
let inner (y : int) = x + y
inner

Straightforward solution: Partial Application + Lambda Lifting
1 Turn local variables into function variables
2 Introduce “partial application” structure for functions

let inner (x : int) (y : int) = x + y

let outer (x : int) = pApp (inner, x)

pApp (pApp (inner, 5), 6)==>* inner 5 6

Hype for Types Compilation February 24, 2025 7 / 23

Middle End - Memory Allocation

4 CPS Conversion
5 Hoisting
6 Memory Allocation

Create memory representations of program values:
Primitives (ex. int)
Functions (are values!)
Datatypes

Hype for Types Compilation February 24, 2025 8 / 23

Memory Allocation - Background

Stack: primitives, small program values

Heap: larger, more complicated values (ex. non-constant constructors,
closures, records)

When we store something on the heap, the memory often looks something
like this:

header payload

Hype for Types Compilation February 24, 2025 9 / 23

Memory Allocation - ADTs

Problem
How are algebraic datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0
Orange 1
Pear 2
Kiwi 3

Hype for Types Compilation February 24, 2025 10 / 23

Memory Allocation - ADTs

Problem
How are algebraic datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0
Orange 1
Pear 2
Kiwi 3

Hype for Types Compilation February 24, 2025 10 / 23

Memory Allocation - ADTs

Problem
How are algebraic datatypes in OCaml represented in memory?

type t = Apple | Orange | Pear | Kiwi

Just represent each constructor as an integer!

Apple 0
Orange 1
Pear 2
Kiwi 3

Hype for Types Compilation February 24, 2025 10 / 23

Memory Allocation - ADTs

Problem
How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

The arguments could be large, so let’s allocate these on the heap:

size of block tag payload
header

The non-parameterized constructors will remain integers, while the
parameterized constructors will be pointers to memory on the heap.

Hype for Types Compilation February 24, 2025 11 / 23

Memory Allocation - ADTs

Problem
How are ADTs in OCaml with arguments represented in memory?

type t = Apple | Orange of int | Pear of string | Kiwi

The arguments could be large, so let’s allocate these on the heap:

size of block tag payload
header

The non-parameterized constructors will remain integers, while the
parameterized constructors will be pointers to memory on the heap.

Hype for Types Compilation February 24, 2025 11 / 23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0
Orange 0
Pear 1
Kiwi 1

Question
Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation February 24, 2025 12 / 23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0
Orange 0
Pear 1
Kiwi 1

Question
Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation February 24, 2025 12 / 23

Memory Allocation - ADTs

Sidenote: in OCaml the numbering for parameterized constructors is
separate from non-parameterized constructors:

Tags
Apple 0
Orange 0
Pear 1
Kiwi 1

Question
Why would it make sense to have separate numberings?

Answer: idk ask the developers (probably some optimization scheme)

Hype for Types Compilation February 24, 2025 12 / 23

Memory Allocation - Lists
type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question
How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =
Nil

| One of int
| Two of int * int
| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13 / 23

Memory Allocation - Lists
type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question
How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =
Nil

| One of int
| Two of int * int
| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13 / 23

Memory Allocation - Lists
type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question
How would mylist be represented in memory?

A linked-list!

Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =
Nil

| One of int
| Two of int * int
| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13 / 23

Memory Allocation - Lists
type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question
How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.

At a high level it looks something like this:
type list =

Nil
| One of int
| Two of int * int
| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13 / 23

Memory Allocation - Lists
type list = Nil | Cons of int * list
let mylist = Cons (1, Cons (2, Cons (3, Nil)))

Question
How would mylist be represented in memory?

A linked-list! Although this may be inefficient, so we can “unroll” to put
multiple elements at one node in the linked-list.
At a high level it looks something like this:

type list =
Nil

| One of int
| Two of int * int
| Rest of int * int * int * list

Hype for Types Compilation February 24, 2025 13 / 23

Memory Allocation - Closures

Question
How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.
Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation February 24, 2025 14 / 23

Memory Allocation - Closures

Question
How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.

Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation February 24, 2025 14 / 23

Memory Allocation - Closures

Question
How should we represent closures?

After lambda-lifting, all function bodies are top-level functions.
Function constants = function pointers
Closures = struct with function pointer & partial application arguments
(or environment map)

Hype for Types Compilation February 24, 2025 14 / 23

Middle End - CPS

4 CPS Conversion
5 Hoisting
6 Memory Allocation

(deep breath) Buckle up

Hype for Types Compilation February 24, 2025 15 / 23

CPS Conversion

Hype for Types Compilation February 24, 2025 16 / 23

Why CPS?

CPS conversion rewrites functions to ensure every function call is a tail call

Main Idea
CPS makes control flow explicit - everything is represented as a jump to
the next continuation.

Bonus: Save stack space! Every function is tail-recursive, so no “stack
overflow”. (There’s no “stack”!)

Hype for Types Compilation February 24, 2025 17 / 23

Remember continuations?

signature CONT =
sig

type 'a cont
val letcc : ('a cont -> 'a) -> 'a
val throw : 'a cont -> 'a -> 'b
val catch : ('a -> void) -> 'a cont

end

Γ, k : τ cont ` e : τ

Γ ` letcc k in e : τ

Γ ` k : τ cont Γ ` e : τ

Γ ` throw k e : τ ′

Hype for Types Compilation February 24, 2025 18 / 23

Remember continuations?

signature CONT =
sig

type 'a cont
val letcc : ('a cont -> 'a) -> 'a
val throw : 'a cont -> 'a -> 'b
val catch : ('a -> void) -> 'a cont

end

Γ, k : τ cont ` e : τ

Γ ` letcc k in e : τ

Γ ` k : τ cont Γ ` e : τ

Γ ` throw k e : τ ′

Hype for Types Compilation February 24, 2025 18 / 23

CPS Translation

Function Translation
τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is φ1 ⊃ φ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(φ1 ∧ ¬φ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19 / 23

CPS Translation

Function Translation
τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is φ1 ⊃ φ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(φ1 ∧ ¬φ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19 / 23

CPS Translation

Function Translation
τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is φ1 ⊃ φ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(φ1 ∧ ¬φ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19 / 23

CPS Translation

Function Translation
τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is φ1 ⊃ φ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(φ1 ∧ ¬φ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19 / 23

CPS Translation

Function Translation
τ1 → τ2 becomes (τ1 × (τ2 cont)) cont

Logically τ1 → τ2 is φ1 ⊃ φ2. Since continuation corresponds to classical
logic, this is equivalent to ¬(φ1 ∧ ¬φ2), which is (τ1 × (τ2 cont)) cont.

val f : int -> int = fn x => add (x, x) where
add : int * int -> int

Translates to:
val f = catch (fn (x, k)=> throw addCPS ((x, x), k)) where
addCPS : ((int * int)* (int cont))cont

To call f:
letcc (fn res => throw f (5, res))

Hype for Types Compilation February 24, 2025 19 / 23

Different IRs

CPS λ-calculus SSA
Inline expansion :) :(:(
Closure :) :) :(
Dataflow analysis :| :(:)
Register allocation :) :(:)
Vectorization :| :(:|

Hype for Types Compilation February 24, 2025 20 / 23

Conclusion

Hype for Types Compilation February 24, 2025 21 / 23

Summary

Compilers are “language translators,” and often compositions of
smaller “language translators.”
Types guide our thinking when we implement the translations!

I Each language is “real,” complete with types and an evaluation
strategy for all well-typed programs.

I Bonus: we can do optimization at any point without worrying about
special “invariants”!

I Easier to debug, too. If output code doesn’t typecheck, it’s a bug.
By thinking compositionally, we slowly transform high-level code into
assembly.

Hype for Types Compilation February 24, 2025 22 / 23

There’s Plenty More!

Writing a compiler is very hard, but rewarding (because compilers are
useful, unlike PL theory).
If this lecture seems cool, consider taking 15-411 - Compiler Design. Also
take 15-417 - HOT Compilation!2

2Frank is teaching it this semester! Yippee!
Hype for Types Compilation February 24, 2025 23 / 23

	Middle End
	CPS Conversion
	Conclusion

