Continuations

Hype for Types

February 10, 2025

=] & = E nae
Hype for Types Continuations

Exceptions

=] & = E nae
Hype for Types Continuations

Find

fun fold f z nil VA
|

fold f z (x::xs)

f(x,

fold f z xs)

=] & = E nae
Hype for Types Continuations

Find

fun fold £ z nil
|

=z
fold f z (x::xs)

f(x,
fun find (p
fold

fold f z xs)

'a -> bool) (1
NONE 1

'a option

o =3 = E Dae
Hype for Types Continuations

'a list)
(fn (x,r) => if p x then SOME x else r)

Find

fun fold f z nil = z
| fold f z (x::xs) = f(x, fold f z xs)
fun find (p : 'a -> bool) (1 : 'a list) : 'a option =
fold
(fn (x,r) => if p x then SOME x else r)
NONE 1
fun find' (p : 'a -> bool) (1 : 'a list) : 'a option =
let exception Ret of 'a in
fold
(fn (x,_) => if p x then raise Ret x else NONE)
NONE 1
handle Ret x => SOME x
end

Hype for Types Continuations February 10, 2025 3/20

Prod

fun fold f z nil
|

=z
fold f z (x::xs)

f(x, fold f z xs)
fun prod p 1 =
fold
op*

11

=] & = E nae
Hype for Types Continuations

Prod

fun fold £ z nil
|

=z
fold f z (x::xs)

f(x, fold f z xs)
fun prod p 1 =
fold
op*

11

fun prod p 1

let exception Ret of int in
fold

(fn (0,_) => raise Ret 0
11

handle Ret i => 1
end

| (x,acc) => x * acc)
o =il = = Dacr

Continuations

=] & = E nae
Hype for Types Continuations

CPS, but at the type level?

(* prod : int list -> (int -> 'a) -> 'a %)
fun prod nil k=k1

| prod (0::_) k =k O

| prod (x::xs) k

prod xs (fn res => k (x * res))

[} = =

Hype for Types Continuations

CPS, but at the type level?

(* prod : int list -> (int -> 'a) -> 'a %)
fun prod nil k=k1

| prod (0::_) k =k O

| prod (x::xs) k

prod xs (fn res => k (x * res))

Goal

Replace type int -> 'a with a jump point expecting an int. J

[} = =

Hype for Types Continuations

it
O
)

Conveniently, SML <> SML/NJ

signature CONT =

sig
type 'a cont
val letcc : ('a cont -> 'a) -> 'a
val throw : 'a cont -> 'a -> 'b
val catch : ('a -> void) -> 'a cont
end

structure K :> CONT =
struct
type 'a cont = 'a SMLofNJ.Cont.cont
val letcc = SMLofNJ.Cont.callcc (* return x*)
val throw = SMLofNJ.Cont.throw
val catch fn £ =>
letcc (absurd o f o letcc o throw)

end

Hype for Types Continuations February 10, 2025

7/20

Some Rules

[k:7 contFe:T

[+ 1letcc k in e: 7T
+~k:7 cont

[Fe:T
I+ throw ke: 7’

o =3 = E Dae
Hype for Types Continuations

CPS, but at the type level!

We replace the int -> 'a continuation with a jumppoint of type

int cont:
(* prod : int list -> int cont -> void *)
fun prod nil k = throw k 1

| prod (0::_) k
| prod (x::xs) k =
throw k (x *

throw k O

letcc (fn k' => absurd (prod xs k')))

Hype for Types Continuations February 10, 2025 9/20

CPS, but at the type level!

We replace the int -> 'a continuation with a jumppoint of type

int cont:
(* prod : int list -> int cont -> void x*)
fun prod nil k = throw k 1

| prod (0::_) = throw k O

| prod (x::xs)
throw k (x

* NN

fun prod nil k
| prod (0::_) k
| prod (x::xs) k =

prod xs (catch

letcc (fn k'

We can also implement it tail-recursively using the helper catch:

(* prod : int list -> int cont -> void *)

throw k 1
throw k O

(fn res => throw k (x * res)))

Hype for Types Continuations February 10, 2025

=> absurd (prod xs k')))

9/20

CPS, but at the type level!

We replace the int -> 'a continuation with a jumppoint of type
int cont:

(* prod : int list -> int cont -> void x*)
fun prod nil k = throw k 1
| prod (0::_) throw k O

| prod (x::xs)

throw k (x

* NN

letcc (fn k' => absurd (prod xs k')))
We can also implement it tail-recursively using the helper catch:

(* prod : int list -> int cont -> void *)
fun prod nil k throw k 1
| prod (0::_) k throw k O
| prod (x::xs) k =
prod xs (catch (fn res => throw k (x * res)))

- letcc (fn k => absurd (prod [1,2,3] k));
val it = 6 : int

Hype for Types Continuations February 10, 2025 9/20

Example: values with holes
(* sum int list
(* sum [2, 1, 5]
~2,

5]

-> (int,
==> INL 8
(x sum [2, ==> INR (~2,K)

int * int cont) either x*)

=] & = E nae
Hype for Types Continuations

*)
*)

Example: values with holes

(* sum : int 1list -> (int, int * int cont) either x*)
(x sum [2, 1, 5] ==> INL 8 *)
(x sum [2, ~2, 5] ==> INR (~2,K) *)
type result = (int, int * int cont) either
fun aux (L : int 1list) (k : result cont) : int =
case L of
nil => 0
| x::xs => letcc (fn here =>
if x < 0 then throw k (INR (x,here)) else x
) + aux xs k
val sum = fn L => letcc (fn k => INL (aux L k))

o F = = .
Hype for Types Continuations

it
\(
;j
‘/f

Example: values with holes

(* sum : int 1list -> (int, int * int cont) either x*)
(*x sum [2, 1, 5] ==> INL 8 *)
(x sum [2, ~2, 5] ==> INR (~2,K)

*)
fun sumNonNeg L =
case sum L of
INL res => SOME res
| INR _ => NONE

=] 5

E DAl
Hype for Types Continuations

Example: values with holes

(* sum : int 1list -> (int, int * int cont) either x*)
(x sum [2, 1, 5] ==> INL 8 *)
(x sum [2, ~2, 5] ==> INR (~2,K) *)

fun sumNonNeg L =
case sum L of
INL res => SOME res
| INR _ => NONE

fun positives L =
case sum L of
INL res => res
| INR (n, k) => throw k (Int.abs n)

(=] [- = b .
Hype for Types Continuations

it
\(
/E‘n
/<

Example: values with holes

(* sum : int 1list -> (int, int * int cont) either x*)
(x sum [2, 1, 5] ==> INL 8 *)
(x sum [2, ~2, 5] ==> INR (~2,K) *)
local

val readNum = fn () => valOf (Int.fromString (valOf(
TextIO.inputLine TextIO.stdIn)))
in
fun fromUser L =
case sum L of
INL res => res
| INR (x, k) => (
print ("We got: "
throw k (readNum ())

Int.toString x ~ " (?) ");

end
Hype for Types Continuations February 10, 2025

12/20

Back to Curry-Howard!

=] & = E nae
Hype for Types Continuations

Is this Logical?

'a*x 'b | AAB
'a+ 'b | AVB
'a->'b|ADB
unit T
void 1

'a cont

o =3 = E Dae
Hype for Types Continuations

Is this Logical?

'a x 'b
'a + 'b
'a > 'b
unit
void
'a cont

AANB
AV B
ADB

Mk:T7 contke:T

[+ letcc k in e: 7T

[+k:7 cont Mle: 7

I+ throw ke: 7'

Hype for Types Continuations February 10, 2025

14 /20

Is this Logical?

'a x 'b
'a+ 'b
'a > 'b
unit
void
'a cont

AAB
AV B
ADB

I,7 cont 71
M=~

7 cont M7

e+

M-AFA
T-A

M--A THA
M-8

Hype for Types Continuations February 10, 2025

14 /20

Is this Logical?

'a x 'b
'a+ 'b
'a > 'b
unit
void
'a cont

AAB
AV B
ADB

-A

I,7 cont 71
M=~

7 cont M7

e+

M-AFA
T-A

M--A THA
M-8

Hype for Types Continuations February 10, 2025

14 /20

Programs are proofs...

Now —A £ 'a cont instead of A £ 'a -> void.
Recall the helper val catch : ('a -> void) -> 'a cont

—(A A —A)

-(AVB)D>-AA-B

(AD>B)D>—=(AAN-B)

Hype for Types Continuations February 10, 2025 15/20

Programs are proofs...

Now —A £ 'a cont instead of A £ 'a -> void.
Recall the helper val catch : ('a -> void) -> 'a cont

catch (fn (a,na) => throw na a)

—(A A —A)

-(AVB)D>-AA-B

(AD>B)D>—=(AAN-B)

Hype for Types Continuations February 10, 2025 15/20

Programs are proofs...

Now —A £ 'a cont instead of ~A £ 'a -> void.
Recall the helper val catch : ('a -> void) -> 'a cont

catch (fn (a,na) => throw na a)

—(A A —A)

fn k =>
(catch (fn a => throw k (INL a)),
catch (fn b => throw k (INR b)))

-(AVB)D>-AA-B

(AD>B)D>—=(AAN-B)

Hype for Types Continuations February 10, 2025 15/20

Programs are proofs...

Now —A £ 'a cont instead of “A £ 'a -> void.

Recall the helper val catch :

—(A N -A)
-(AVB)D>-AA-B

(AD>B)D>—=(AAN-B)

Hype for Types Continuations February 10, 2025

('a -> void) -> 'a cont
catch (fn (a,na) => throw na a)

fn k =>
(catch (fn a => throw k (INL a)),

catch (fn b => throw k (INR b)))

fn f => catch (fn (a,nb) =>
throw nb (f a))

15/20

Finally a proof of AV —A

Devil: | have an offer for you. Either | give you a ton of gold, or you give
me a ton of gold and | will make you the instructor of H4T.

Hype for Types Continuations February 10, 2025 16 /20

Finally a proof of AV —A

We prove PV =P by proving =P. If you believe me, then we are done. If
you don't believe me, then you need to give a counter proof, a.k.a a proof
of P. Then we PV =P by proving P.

Hype for Types Continuations February 10, 2025 17 /20

Finally a proof of AV —A

We prove PV =P by proving =P. If you believe me, then we are done. If
you don't believe me, then you need to give a counter proof, a.k.a a proof
of P. Then we PV =P by proving P.

Important Idea l

Continuations correspond to classical logic!
February 10, 2025 17 /20

Classical Proofs!?

Now —A £ 'a cont instead of ~A £ 'a -> void.
We'll provide the helper val catch : ('a -> void) -> 'a cont!

AV —A

——ADA

~(AAB)D —AV B

-(AAN-B)DADB

lfun catch f = letcc (absurd o f o letcc o throw)

Hype for Types Continuations February 10, 2025 18/20

Classical Proofs!?

Now —A £ 'a cont instead of ~A £ 'a -> void.
We'll provide the helper val catch : ('a -> void) -> 'a cont!

AV —A

——ADA

~(AAB)D —AV B

-(AAN-B)DADB

letcc (fn nana =>
INR (catch (fn a => throw nana (INL a))

lfun catch f = letcc (absurd o f o letcc o throw)

Hype for Types Continuations February 10, 2025 18/20

Classical Proofs!?

Now —A £ 'a cont instead of “A £ 'a -> void.
We'll provide the helper val catch : ('a -> void) -> 'a cont!

AV —A

——ADA

~(AAB)D —AV B

-(AAN-B)DADB

letcc (fn nana =>
INR (catch (fn a => throw nana (INL a))

fn nna =>
letcc (fn na => throw nna na)

lfun catch f = letcc (absurd o f o letcc o throw)

Hype for Types Continuations February 10, 2025 18/20

Classical Proofs!?

Now —A £ 'a cont instead of “A £ 'a -> void.
We'll provide the helper val catch : ('a -> void) -> 'a cont!

AV —-A letcc (fn nana =>
INR (catch (fn a => throw nana (INL a))

-—ADA fn nna =>
letcc (fn na => throw nna na)

-(AAB) D> -AV-B fn nab => letcc (fn k =>
INL (catch (fn a => throw k (
INR (catch (fn b => throw nab (a,b)))))

-(AAN-B)DADB

lfun catch f = letcc (absurd o f o letcc o throw)

Hype for Types Continuations February 10, 2025 18/20

Classical Proofs!?

Now —A £ 'a cont instead of “A £ 'a -> void.
We'll provide the helper val catch : ('a -> void) -> 'a cont!

AV —-A letcc (fn nana =>
INR (catch (fn a => throw nana (INL a))

-—ADA fn nna =>
letcc (fn na => throw nna na)

-(AAB) D> -AV-B fn nab => letcc (fn k =>

INL (catch (fn a => throw k (

INR (catch (fn b => throw nab (a,b)))))
-(AAN-B)DADB fn k => fn a =>

letcc (fn nb => throw k (a,nb))

fun catch f = letcc (absurd o f o letcc o throw)

Hype for Types Continuations February 10, 2025 18 /20

Demo: True or Not True?

fn OO =>

val weird

let

val p = K.letcc (fn na => INR (K.catch (K.throw na o

INL))) : (unit,unit K.cont) Either.either

in

case p of

INL () => print "duh, true is truel\n"

| INR k¥ => (print "uhhh what?\n"; K.throw k ())

end

Hype for Types Continuations February 10, 2025 19/20

Conclusion

flow.

@ Continuations are useful to program with! They let you alter control

=] & = E nagc
Hype for Types Continuations

Conclusion

@ Continuations are useful to program with! They let you alter control
flow.

@ Classical logic doesn't hold much proof content.

Hype for Types Continuations February 10, 2025 20/20

	Exceptions
	Continuations
	Back to Curry-Howard!

