Substructural Logic

(Linear Logic and Linear Type Systems)

Hype for Types

February 17, 2025

What We'll Talk About

• What it means for a logic to be "substructural"

What We'll Talk About

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)

What We'll Talk About

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)
- Ok this is cool, but does this work in the real world? (If we have time)

Substructural Logic

The constructive logic we have been working with so far has the following admissible rules, which we call "structural properties" of the logic:

$$\frac{\Gamma \vdash C}{\Gamma, A \vdash C} \text{ (Weak)} \qquad \frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} \text{ (Cntr)}$$

$$\frac{\Gamma, A, B \vdash C}{\Gamma, B, A \vdash C} \text{ (Exch)}$$

What happens if you remove some of these structural properties?

What happens if you remove some of these structural properties? You would get a new logical system!

• Affine Logic: no contraction (Use premises at most once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

Today, we'll be focusing on *linear logic*, and how we can relax it a little bit to get a very useful programming language.

Linear Logic

The moon is made of green cheese. Therefore, you come to hype for types today.

Question

Is this logical?

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true."

But what it really says is "If you give me as many copy of A as I need, then I give you B is true."

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true."

But what it really says is "If you give me as many copy of A as I need, then I give you B is true."

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true."

But what it really says is "If you give me as many copy of A as I need, then I give you B is true."

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Idea

We need a logic that forces relevance.

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $\$6 \Rightarrow Coffee$
- $\$6 \Rightarrow Muffin$

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $\$6 \Rightarrow Coffee$
- $\$6 \Rightarrow Muffin$

To the owner's dismay, bound by the laws of constructive logic, you walk out with their entire stock of muffins and a coffee.¹

Question

Is this logical?

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $\$6 \Rightarrow Coffee$
- $\$6 \Rightarrow Muffin$

To the owner's dismay, bound by the laws of constructive logic, you walk out with their entire stock of muffins and a coffee.¹

Question

Is this logical?

Idea

The problem is that "regular" logic allows us to freely duplicate assumptions.

Idea

We need a logic that limits usage.

Malloc is Scary...

Consider the following C code:

```
int main () {
   char *str;
   str = (char *) malloc(13);
   strcpy(str, "hypefortypes");
   free(str);
   return(0);
}
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Malloc is Scary...

Consider the following C code:

```
int main () {
   char *str;
   str = (char *) malloc(13);
   strcpy(str, "hypefortypes");
   free(str);
   return(0);
}
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Question

Is there a way to make our types guarantee correctness?

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

Persistence is due to implicit structural rules: weakening and contraction.

Weakening

```
int main() {
  int *x = (int *) malloc(sizeof(int));
  *x = 3;
  return 0;
}
```

Weakening

```
int main() {
   int *x = (int *) malloc(sizeof(int));
   *x = 3;
   return 0;
}
```

Weakening: we can "drop" assumptions

$$\frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau}$$
(WEAK)

Contraction

```
void f(int *x) {
   free(x);
2
3 }
 int main() {
   int *x = (int *) malloc(sizeof(int));
6
   *x = 3;
7
   f(x);
   f(x);
   return 0;
10
```

Contraction

```
void f(int *x) {
   free(x);
5 int main() {
  int *x = (int *) malloc(sizeof(int));
 *x = 3;
8  f(x);
9  f(x);
 return 0;
```

Contraction: we can "duplicate" assumptions

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \text{ (Cntr)}$$

Introduction to Linear Logic

In **linear logic**, we have neither weakening nor contraction.

- Requirement that we use each piece of data exactly once no duplication, no dropping
- Comes with an inherent idea of "resources" that are used up
- Allows us to write safe, stateful (imperative!) programs

The Linear Rules

Identity

Constructive Logic

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{ (HYP)}$$

Identity

Constructive Logic

$$\frac{A \in \Gamma}{\Gamma \vdash A}$$
 (HYP)

Linear Logic

$$\overline{A \vdash A}$$
 (HYP)

Identity

Constructive Logic

Linear Logic

$$\frac{A\in\Gamma}{\Gamma\vdash A}\;(\mathrm{Hyp})$$

$$\overline{A \vdash A}$$
 (HYP)

Intuition

"Given A and nothing else, we can use up A"

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land E1) \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land E2)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land E2)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land E2)$$

$$\frac{\Delta_1 \vdash A_1 \quad \Delta_2 \vdash A_2}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} \ (\otimes I)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land E2)$$

$$\frac{\Delta_1 \vdash A_1 \quad \Delta_2 \vdash A_2}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} \ (\otimes I)$$

$$\frac{\Delta \vdash A_1 \otimes A_2 \qquad \Delta', A_1, A_2 \vdash C}{\Delta, \Delta' \vdash C} \ (\otimes E)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$

$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \Gamma, A_2 \vdash B \qquad (\lor E)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$

$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} (\lor E)$$

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$

$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \Gamma, A_2 \vdash B \qquad (\lor E)$$

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} \; (\oplus \text{I1})$$

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2})$$

$$\frac{\Gamma \vdash A_{1} \lor A_{2}}{\Gamma \vdash B} \qquad \Gamma, A_{2} \vdash B \qquad (\lor E)$$

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} \ (\oplus \text{I1}) \qquad \qquad \frac{\Delta \vdash A_2}{\Delta \vdash A_1 \oplus A_2} \ (\oplus \text{I2})$$

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2})$$

$$\frac{\Gamma \vdash A_{1} \lor A_{2}}{\Gamma \vdash B} \qquad \Gamma, A_{2} \vdash B \qquad (\lor E)$$

$$\frac{\Delta \vdash A_{1}}{\Delta \vdash A_{1} \oplus A_{2}} (\oplus I1) \qquad \frac{\Delta \vdash A_{2}}{\Delta \vdash A_{1} \oplus A_{2}} (\oplus I2)$$

$$\frac{\Delta \vdash A_{1} \oplus A_{2}}{\Delta, \Delta' \vdash B} (\oplus E)$$

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} \ (\supset I)$$

$$\frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} \ (\supset E)$$

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} \; (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} \; (\supset E)$$

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} \ (\supset I)$$

$$\frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} \ (\supset E)$$

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} \ (\multimap I)$$

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} \ (\supset I)$$

$$\frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} \ (\supset E)$$

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} \ (\multimap I)$$

$$\frac{\Delta \vdash A_1 \multimap A_2 \quad \Delta' \vdash A_1}{\Delta, \Delta' \vdash A_2} \ (\multimap E)$$

Model Real Worlds Using Linear Logic

Recall the Constructive Logic Cafe

- $$6 \Rightarrow Coffee$
- $\$6 \Rightarrow Muffin$

We have \$10 to spend and we are both hungry and thirsty.

Model Real Worlds Using Linear Logic

Recall the Constructive Logic Cafe

- $$6 \Rightarrow Coffee$
- $\$6 \Rightarrow Muffin$

We have \$10 to spend and we are both hungry and thirsty.

Stuctural Logic Causes Inflation!

Well $(A \Rightarrow B) \land (A \Rightarrow C) \Rightarrow (A \Rightarrow B \land C)$ so we can buy both! This doesn't seem right...

Time for a Rebrand!

Rebranding to the Linear Logic Cafe^a

aLLC LLC

- \$6 → Coffee
- \$6 → Muffin

Time for a Rebrand!

Rebranding to the Linear Logic Cafe^a

aLLC LLC

- \$6 → Coffee
- \$6 → Muffin

Linear Logic Does Not

 $(A \multimap B) \otimes (A \multimap C) \not \multimap (A \multimap B \otimes C)$ so we cannot buy both! Capitalism is saved!^a

^aWhat have we done...

The Actual Real World

Imagine a substructural programming language... what would that look like?

Imagine a substructural programming language... what would that look like?

Complaints

• I like using variables more than once!

Imagine a substructural programming language... what would that look like?

Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)

Imagine a substructural programming language... what would that look like?

Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)
- You're telling me the order I declare variables should matter!??

Imagine a substructural programming language... what would that look like?

Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)
- You're telling me the order I declare variables should matter!??

These are fair criticisms! So let's compromise!

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{ (ID)} \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} \text{ (Weak)}$$

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{ (ID)} \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} \text{ (Weak)}$$

And exchange is...

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{ (ID)} \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} \text{ (Weak)}$$

And exchange is... yeah you can have that too

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{ (ID)} \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} \text{ (Weak)}$$

And exchange is... yeah you can have that too But, can we negotiate on contraction?

Contraction: The Idea

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \text{ (Cntr)}$$

Contraction: The Idea

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \text{ (Cntr)}$$

We can use our variables more than once.

Contraction: The Idea

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \; (\texttt{Cntr})$$

We can use our variables more than once.

Why not contraction?

Benefits!

We can never double free!

Contraction: The Idea

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \text{ (Cntr)}$$

We can use our variables more than once.

Why not contraction?

Benefits!

- We can never double free!
- We cannot write race conditions!

Contraction: The Idea

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \text{ (Cntr)}$$

We can use our variables more than once.

Why not contraction?

Benefits!

- We can never double free!
- We cannot write race conditions!
- We get automatic memory management without the cost of GC!

Let's Try It!