Substructural Logic (Linear Logic and Linear Type Systems)

Hype for Types

February 25, 2024

		_	
VDA	tor	1 V/P	AC
VDC			163

э

Image: A matrix

What We'll Talk About

• What it means for a logic to be "substructural"

< A

э

What We'll Talk About

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)

What We'll Talk About

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)
- How do servers work?

Substructural Logic

n o	tor		200
			100
		_	

2

<ロト < 四ト < 三ト < 三ト

The constructive logic we have been working with so far has the following admissible rules, which we call "structural properties" of the logic:

$$\frac{\Gamma \vdash C}{\Gamma, A \vdash C} (WEAK) \qquad \qquad \frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} (CNTR)$$
$$\frac{\Gamma, A, B \vdash C}{\Gamma, B, A \vdash C} (EXCH)$$

What happens if you remove some of these structural properties?

э

What happens if you remove some of these structural properties? You would get a new logical system!

Image: Image:

What happens if you remove some of these structural properties? You would get a new logical system!

• Affine Logic: no contraction (Use premises at most once)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

Today, we'll be focusing on *linear logic*, and how we can use it to model a client-server protocol.

Linear Logic

	-		
n o	tor.		n o c
 De -	TOT .	- I V	Des

3

<ロト < 四ト < 三ト < 三ト

The moon is made of green cheese. Therefore, you come to hype for types today.

Question Is this logical?

э

< □ > < 同 > < 回 > < 回 > < 回 >

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Idea

We need a logic that forces relevance.

< □ > < □ > < □ > < □ > < □ > < □ >

Malloc is Scary...

Consider the following C code:

```
1 int main () {
2     char *str;
3     str = (char *) malloc(13);
4     strcpy(str, "hypefortypes");
5     free(str);
6     return(0);
7 }
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Malloc is Scary...

Consider the following C code:

```
1 int main () {
2     char *str;
3     str = (char *) malloc(13);
4     strcpy(str, "hypefortypes");
5     free(str);
6     return(0);
7 }
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Question Is there a way to make our *types* guarantee correctness?

		<i>c</i>	_	
- HN	ne.	tor	1.17	nec
	De.			Des

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

		<i>c</i>	_	
- HW	ne	tor	1.17	nec
	De			005

э

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

		<i>c</i>	_	
- HM	ne	tor	1.17	nec
	De			005

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

Persistence is due to implicit **structural rules**: weakening and contraction.

Weakening

```
1 int main() {
2 int *x = (int *) malloc(sizeof(int));
3 *x = 3;
4 return 0;
5 }
```

		<i>c</i>	_	
- HM	ne	tor	1.1/1	200
	De			763

3

Weakening

```
1 int main() {
2 int *x = (int *) malloc(sizeof(int));
3 *x = 3;
4 return 0;
5 }
```

Weakening: we can "drop" assumptions

$$\frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau}$$
(WEAK)

Hype for Types

3

(日)

Contraction

```
1 void f(int *x) {
    free(x);
2
3 }
4
5
 int main() {
    int *x = (int *) malloc(sizeof(int));
6
   *x = 3;
7
   f(x);
8
    f(x);
9
    return 0;
10
11 }
```

э

イロト イボト イヨト イヨト

Contraction

```
1 void f(int *x) {
    free(x);
2
3 }
4
 int main() {
5
    int *x = (int *) malloc(sizeof(int));
6
    *x = 3;
7
   f(x);
8
   f(x);
9
   return 0;
10
11 }
```

Contraction: we can "duplicate" assumptions

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

э

イロト イポト イヨト イヨト

Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.

- Requirement that we use each piece of data *exactly* once no duplication, no dropping
- Comes with an inherent idea of "resources" that are used up
- Allows us to write safe, stateful (imperative!) programs

The Linear Rules

	-		
n o	tor.		n o c
 De -	TOT .	- I V	Des

2

< □ > < □ > < □ > < □ > < □ >

Identity

Constructive Logic

$$\frac{A\in \Gamma}{\Gamma\vdash A}\;(\mathrm{Hyp})$$

		<i>c</i>	_	
HV	ne	tor	1.17	nec
	De			Des

2

・ロト ・四ト ・ヨト ・ヨト

Identity

Constructive Logic

Linear Logic

$$\frac{A \in \Gamma}{\Gamma \vdash A} (\mathrm{Hyp})$$

 $\overline{A \vdash A}$ (Hyp)

		<i>c</i>	_	
H N	ne	tor	1.17	nec
	De			Des

2

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Identity

Constructive LogicLinear Logic $\frac{A \in \Gamma}{\Gamma \vdash A} (Hyp)$ $\frac{A \vdash A}{A \vdash A} (Hyp)$

Intuition

"Given A and nothing else, we can use up A"

э

(日)

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} (\land \mathbf{I})$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land \mathbf{E1}) \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land \mathbf{E2})$$

HA	ne.	tor	VDAC
	v De		1 1 0 0 6 3

2

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land E1) \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land E2)$$

Linear Logic

Hype	tor	1 VDAG
I VDE		I VDES

2

ヨト・モラト

• • • • • • • •

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land \mathbf{I})$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land E2)$$

Linear Logic

$$\frac{\Delta_1 \vdash A_1}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} (\otimes I)$$

2

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land \mathbf{I})$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land E2)$$

Linear Logic

$$\frac{\Delta_1 \vdash A_1 \quad \Delta_2 \vdash A_2}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} \ (\otimes I)$$

$$\frac{\Delta \vdash \textit{A}_1 \otimes \textit{A}_2 \quad \Delta', \textit{A}_1, \textit{A}_2 \vdash \textit{C}}{\Delta, \Delta' \vdash \textit{C}} \ (\otimes \mathrm{E})$$

2

16 / 19

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2}) \\
\frac{\Gamma \vdash A_{1} \lor A_{2} \qquad \Gamma, A_{1} \vdash B \qquad \Gamma, A_{2} \vdash B}{\Gamma \vdash B} (\lor E)$$

		_	
(DO	tor	L VD	00
v De			C 3

3

ヘロト 人間 トメヨトメヨト

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2}) \\
\frac{\Gamma \vdash A_{1} \lor A_{2} \qquad \Gamma, A_{1} \vdash B \qquad \Gamma, A_{2} \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

Hype	tor	1VDAC
IIVPE		I V D C S

2

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$
$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \frac{\Gamma, A_2 \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1)$$

2

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$
$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \frac{\Gamma, A_2 \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1) \qquad \qquad \frac{\Delta \vdash A_2}{\Delta \vdash A_1 \oplus A_2} (\oplus I2)$$

2

17 / 19

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$
$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \frac{\Gamma, A_2 \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1) \qquad \qquad \frac{\Delta \vdash A_2}{\Delta \vdash A_1 \oplus A_2} (\oplus I2)$$
$$\frac{\Delta \vdash A_1 \oplus A_2}{\Delta, \Delta' \vdash B} (\oplus E)$$

イロト イヨト イヨト イヨト

3

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

		_	
ne.	tor	11/1	100
De.			JC 3

2

<ロト < 四ト < 三ト < 三ト

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

		<i>c</i>	_	
HM	ne	tor	11/1	100
	De			JC 3

2

→ < ∃ →</p>

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} \ (\multimap I)$$

2

イロト イポト イヨト イヨト

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} (\multimap I) \qquad \qquad \frac{\Delta \vdash A_1 \multimap A_2 \quad \Delta' \vdash A_1}{\Delta, \Delta' \vdash A_2} (\multimap E)$$

2

イロト イポト イヨト イヨト

Model Real Worlds Using Linear Logic

5 dollars can buy one coffee and one donut.

 $5 \multimap coffee \otimes donut$

		<i>c</i>	_	
HV	ne	tor	1.17	nec
	De			Des

э

Model Real Worlds Using Linear Logic

5 dollars can buy one coffee and one donut.

 $5 \multimap coffee \otimes donut$

Buffet entrance is 10 dollars. Once you enter, you can eat some beef, and with 2 more dollars you can eat some chicken.

$$10 \longrightarrow \texttt{beef} \otimes (\$2 \longrightarrow \texttt{chicken})$$