Parametricity: A Story in Trivializing 15-150

Hype for Types

March 20, 2024

Hype for Types Parametricity: A Story in Trivializing 15-150



Motivation

Hype for Types Parametricity: A Story in Trivializing 15-150



|dentity

Recall from last week the function f : ¥VX.X — X. A natural question to
ask is “how many such functions are there?”

!Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



|dentity

Recall from last week the function f : VX.X — X. A natural question to
ask is “how many such functions are there?”

One. Because...

!Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



|dentity

Recall from last week the function f : ¥VX.X — X. A natural question to
ask is “how many such functions are there?”

One. Because... you get an x : ...

!Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



|dentity

Recall from last week the function f : ¥VX.X — X. A natural question to

ask is “how many such functions are there?”

One. Because... you get an x : «... and...

!Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024

3/15



|dentity

Recall from last week the function f : ¥VX.X — X. A natural question to
ask is “how many such functions are there?”

One. Because... you get an x : «v... and... what else can you do with it
besides return it.

! Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



|dentity

Recall from last week the function f : VX.X — X. A natural question to
ask is “how many such functions are there?”

One. Because... you get an x : «v... and... what else can you do with it
besides return it. Or something...

! Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



|dentity

Recall from last week the function f : VX.X — X. A natural question to
ask is “how many such functions are there?”

One. Because... you get an x : «v... and... what else can you do with it
besides return it. Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to provel that there is only one such function.

! Above is not a proof

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 3/15



More Generally...

If | give you a function f : VX.List(X) — List(X) what function do you
expect it to be?

You probably said Reverse or Duplicate-Every-Element or
Take-The-First-Two-Elements-And-Copy-Them-Five-Times-And-Then-
Append-The-Third-Element-To-The-End? : ¥X.List(X) — List(X).

2Pretend this is total

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 4/15



More Generally...

If | give you a function f : VX.List(X) — List(X) what function do you
expect it to be?

You probably said Reverse or Duplicate-Every-Element or
Take-The-First-Two-Elements-And-Copy-Them-Five-Times-And-Then-
Append-The-Third-Element-To-The-End? : ¥X.List(X) — List(X).

The point is that any function you described is returning some

permutation /duplication/removal of the elements which does not refer to
the values themselves.

2Pretend this is total

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 4/15



Mapping over these

Take your function f from before, and now take your favorite function
g : A— B. Consider the following equation:

(mapg)of =fo(mapg)

3This is a lie. Induction is my favorite proof technique and it'sinot even close

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 5/15



Mapping over these

Take your function f from before, and now take your favorite function
g : A — B. Consider the following equation:

(mapg)of =fo(mapg)

It turns out this is true. The intuition is that “Since f cannot refer to the
elements themselves, mapping a function g then permuting the list should
be the same as permuting the list then mapping a function g.”

You probably proved in 15-150 something like
For all f : A— B, (mapf) o reverse = reverse o (map f)

By induction on the list or something.

3This is a lie. Induction is my favorite proof technique and it'sinot even close
Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 5/15



Mapping over these

Take your function f from before, and now take your favorite function
g : A — B. Consider the following equation:

(mapg)of =fo(mapg)

It turns out this is true. The intuition is that “Since f cannot refer to the
elements themselves, mapping a function g then permuting the list should
be the same as permuting the list then mapping a function g.”

You probably proved in 15-150 something like
For all f : A— B, (mapf) o reverse = reverse o (map f)

By induction on the list or something. | hate induction,3 let's do better.

3This is a lie. Induction is my favorite proof technique and it'sinot even close
Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 5/15



What the Hype is a Type

Let's ask a fundamental question. How do you think about types?

*What the hype is a set? Like actually, can someone please explain it to me without
“oh it's an element of V" and then laughing maniacally

Kinda Sorta Not Really But...

5Yar, thar be domains in these seas

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 6/15



What the Hype is a Type

Let's ask a fundamental question. How do you think about types?
You probably view types as sets*.

e [Bool] = {0,1}

o [Int] =Z

o [Ax B] =[A] x[B]
o [A— B]=BA
[List(A)] = A*

This is generally fine®®, but today we will view types as relations.

“What the hype is a set? Like actually, can someone please explain it to me without
“oh it's an element of V" and then laughing maniacally

Kinda Sorta Not Really But...

5Yar, thar be domains in these seas

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 6/15



Some Notation and ldeas

o A: A< A means A is a relation between A and A’ ie. AC AXx A

o If x € Aand x' € A, we write (x,x") € A to mean x and x’ are
related by A.

@ Ia is the identity relation on A i.e. for all x € A, (x,x) € la.

o We may view any function f : A — B as a relation A < B via
{(a;fa)|ac A}

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 7/15



Types as relations

We may interpret some basic types as relations in the following manner:
o [Int] = hnt
e [Bool] = Igool
o [Ax Bl ={((x.y).(x,¥)) | (x,x") € Aand (y,y’) € B}.

Now informally:

For a relation A : A < A, we give the relation List(.A) by two lists having
the same length and their elements being pair-wise related by A

For two relations A : A< A’ and B: B & B, the relation A — B says
two functions are related if they take related inputs under A to related
outputs under B.

Polymorphic functions are related if they take related types to related
outputs.

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 8/15



The Big Theorem

What we've been working for:
The Parametricity Theorem

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 9/15



The Big Theorem

What we've been working for:
The Parametricity Theorem

If t: T, then (t,t) e T

Hype for Types Parametricity: A Story in Trivializing 15-150

March 20, 2024

9/15



The Big Theorem

What we've been working for:
The Parametricity Theorem

If t: T, then (t,t) e T

That's... kinda underwhelming.

Hype for Types

Parametricity: A Story in Trivializing 15-150 March 20, 2024

9/15



Why Should you Care

Hang on hang on, before you leave, let's look back at our example from
earlier. Recall, we wanted to prove

For all functions f : A — B and r : ¥X.List(X) — List(X),
(mapf)or=ro(mapf)

Maybe our new parametricity theorem can help?

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024

10/15



A Parametrically Polymorphic Proof

@ Parametricity tells us (r, r) € VX List(X) — List(X).

"Recall r[A] is the polymorphic function r applied to the type A
Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 11/15




A Parametrically Polymorphic Proof

@ Parametricity tells us (r, r) € VX List(X) — List(X).

@ We can expand this to see that for all relations A : A < A,
(r[A]7, r[A]) € List(A) — List(A)

"Recall r[A] is the polymorphic function r applied to the type A

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 11/15



A Parametrically Polymorphic Proof

@ Parametricity tells us (r, r) € VX List(X) — List(X).
@ We can expand this to see that for all relations A : A < A,
(r[A]7, r[A]) € List(A) — List(A)
© We can then expand this to see that for all relations A : A < A, for
all (xs, xs") € List(A), (r[A](xs), r[A](xs")) € List(.A)
This seems to be getting us somewhere.. but this is too general to be
useful... Let's focus on when A is a relation induced by a function
f:A—= AL

"Recall r[A] is the polymorphic function r applied to the type A

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 11/15



A Parametrically Polymorphic Proof

@ Parametricity tells us (r, r) € VX List(X) — List(X).
@ We can expand this to see that for all relations A : A < A,
(r[A]7, r[A]) € List(A) — List(A)
© We can then expand this to see that for all relations A : A < A, for
all (xs, xs") € List(A), (r[A](xs), r[A](xs")) € List(.A)
This seems to be getting us somewhere.. but this is too general to be
useful... Let's focus on when A is a relation induced by a function
f:A—= AL
For all functions f : A — A’, for all (map f xs, xs) € R¢, implies
(r[A](map f xs), r[A’](xs)) € List(Rf). This seems very close...

"Recall r[A] is the polymorphic function r applied to the type A
Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 11/15



A Parametrically Polymorphic Proof

We now know that for all functions f : A — A, for all
(map f xs, xs) € List(R¢), implies (r[A](map f xs), r[A'](xs)) € List(Ry).

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 12/15



A Parametrically Polymorphic Proof

We now know that for all functions f : A — A, for all
(map f xs, xs) € List(R¢), implies (r[A](map f xs), r[A'](xs)) € List(Ry).

Recall, two terms are related by List(R¢) if they have equal length, and
the elements are pointwise related.

Hype for Types

Parametricity: A Story in Trivializing 15-150

March 20, 2024 12/15



A Parametrically Polymorphic Proof

We now know that for all functions f : A — A, for all
(map f xs, xs) € List(R¢), implies (r[A](map f xs), r[A'](xs)) € List(Ry).

Recall, two terms are related by List(R¢) if they have equal length, and
the elements are pointwise related. Our relation here is that (x, f x) € Ry.

Hype for Types

Parametricity: A Story in Trivializing 15-150

March 20, 2024 12/15



A Parametrically Polymorphic Proof

We now know that for all functions f : A — A, for all
(map f xs, xs) € List(R¢), implies (r[A](map f xs), r[A'](xs)) € List(Ry).

Recall, two terms are related by List(R¢) if they have equal length, and

the elements are pointwise related. Our relation here is that (x, f x) € Ry.
In otherwords,

Forall f: A— A, r[A](map f xs) = map f (r[A’](xs))

or more cleanly

For all r: VX.List(X) — List(X), forall f : A— A,
r[A] o (map f) = (map f) o r[A’]

Hype for Types

Parametricity: A Story in Trivializing 15-150 March 20, 2024 12/15



15-1507 More like... Parametricity Theorem

We did it! Not only did we prove that
reverse o (map ) = (map f) o reverse

we managed to prove something way more general!

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024

13/15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but
we can use parametricity to prove this!

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 14 /15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but
we can use parametricity to prove this!

QO (f,fleVX.X = X

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 14 /15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but

we can use parametricity to prove this!
Q (f,HHevVx. X - X
@ For all functions g : A — A, (f[A], f[A]) € Rg = Rg.

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024

14/15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but
we can use parametricity to prove this!

O (f.f)eVX.X 5 X
@ For all functions g : A — A, (f[A], f[A]) € Rg = Rg.
© For all functions g : A — A, (g o f[A], f[A]) € Rg

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 14 /15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but
we can use parametricity to prove this!

Q (f,flevVX. X > X

@ For all functions g : A — A, (f[A], f[A]) € Rg = Rg.
© For all functions g : A — A, (g o f[A], f[A]) € Rg

Q For all functions g : A — A’, go f[A] = f[A] o g.

Hmm this seems close... we need one final trick.

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 14 /15



The original Goal

| claim that if £ :VX.X — X, then f = id. You know this intuitively, but

we can use parametricity to prove this!
Q (f,flevVX¥.X¥ - X
@ For all functions g : A — A, (f[A], f[A]) € Rg = Rg.
© For all functions g : A — A, (g o f[A], f[A]) € Rg
Q For all functions g : A — A’, go f[A] = f[A] o g.

Hmm this seems close... we need one final trick.

Well, by function extensionality, we know that

Vx: A Vg : A— A g(flA]x) = f[Al(g x)

What if we pick g = A_.x! We then have that g(f[A] x) = x and
f[Al(g x) = f[A](x). In otherwords, x = f[A](x)!

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024

14/15



Free Theorems

Theorems of this form are called “free theorems” named after Phillip
Wadler's Paper called, unsurprisingly “Theorems for Free”.

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 15/15



Free Theorems

Theorems of this form are called “free theorems” named after Phillip
Wadler's Paper called, unsurprisingly “Theorems for Free”.

Such theorems are direct consequences of the Parametricity Theorem and
allow you to prove basically any 15-150 style equality... for free!

https://free-theorems.nomeata.de/

Hype for Types Parametricity: A Story in Trivializing 15-150 March 20, 2024 15/15



	Motivation

