
Dependent Types

Hype for Types

April 7, 2025

Hype for Types Dependent Types April 7, 2025 1 / 26



Safe Printing

Hype for Types Dependent Types April 7, 2025 2 / 26



Detypify

Consider these well typed expressions:
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32

What is the type of sprintf?

Well... it depends.

Hype for Types Dependent Types April 7, 2025 3 / 26



Detypify

Consider these well typed expressions:
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32

What is the type of sprintf? Well... it depends.

Hype for Types Dependent Types April 7, 2025 3 / 26



Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!

(* sprintf s : formatType s *)

fun formatType (s : char list) : type =
case s of

[] => char list
| ('%' :: 'd' :: cs) => (int -> formatType cs)
| ('%' :: 's' :: cs) => (string -> formatType cs)
| (_ :: cs) => formatType cs

(* formatType "%d and %s" = int -> string -> char list *)
(* sprintf "%d and %s" : int -> string -> char list *)

Hype for Types Dependent Types April 7, 2025 4 / 26



Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!
(* sprintf s : formatType s *)

fun formatType (s : char list) : type =
case s of

[] => char list
| ('%' :: 'd' :: cs) => (int -> formatType cs)
| ('%' :: 's' :: cs) => (string -> formatType cs)
| (_ :: cs) => formatType cs

(* formatType "%d and %s" = int -> string -> char list *)
(* sprintf "%d and %s" : int -> string -> char list *)

Hype for Types Dependent Types April 7, 2025 4 / 26



Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!
(* sprintf s : formatType s *)

fun formatType (s : char list) : type =
case s of
[] => char list

| ('%' :: 'd' :: cs) => (int -> formatType cs)
| ('%' :: 's' :: cs) => (string -> formatType cs)
| (_ :: cs) => formatType cs

(* formatType "%d and %s" = int -> string -> char list *)
(* sprintf "%d and %s" : int -> string -> char list *)

Hype for Types Dependent Types April 7, 2025 4 / 26



Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!
(* sprintf s : formatType s *)

fun formatType (s : char list) : type =
case s of
[] => char list

| ('%' :: 'd' :: cs) => (int -> formatType cs)
| ('%' :: 's' :: cs) => (string -> formatType cs)
| (_ :: cs) => formatType cs

(* formatType "%d and %s" = int -> string -> char list *)
(* sprintf "%d and %s" : int -> string -> char list *)

Hype for Types Dependent Types April 7, 2025 4 / 26



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?

Recall that when we wanted to express a type like “A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.

What if we had universal quantification over values?

sprintf : (s : char list) -> formatType s

Hype for Types Dependent Types April 7, 2025 5 / 26



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?

Recall that when we wanted to express a type like “A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.

What if we had universal quantification over values?

sprintf : (s : char list) -> formatType s

Hype for Types Dependent Types April 7, 2025 5 / 26



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?

Recall that when we wanted to express a type like “A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.

What if we had universal quantification over values?

sprintf : (s : char list) -> formatType s

Hype for Types Dependent Types April 7, 2025 5 / 26



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?

Recall that when we wanted to express a type like “A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.

What if we had universal quantification over values?

sprintf : (s : char list) -> formatType s

Hype for Types Dependent Types April 7, 2025 5 / 26



Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ) → A ≡ ∀x : τ.A

This type is sometimes also written as:
1 ∀(x : τ) → A
2 ∀x : t.A
3 Πx :τA

Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both?

Hype for Types Dependent Types April 7, 2025 6 / 26



Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ) → A ≡ ∀x : τ.A

This type is sometimes also written as:
1 ∀(x : τ) → A
2 ∀x : t.A
3 Πx :τA

Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both?

Hype for Types Dependent Types April 7, 2025 6 / 26



Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ) → A ≡ ∀x : τ.A

This type is sometimes also written as:
1 ∀(x : τ) → A
2 ∀x : t.A
3 Πx :τA

Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both?

Hype for Types Dependent Types April 7, 2025 6 / 26



Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ) → A ≡ ∀x : τ.A

This type is sometimes also written as:
1 ∀(x : τ) → A
2 ∀x : t.A
3 Πx :τA

Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both?

Hype for Types Dependent Types April 7, 2025 6 / 26



Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both?

Nope!

A → B ≡ (_ : A) → B

Hype for Types Dependent Types April 7, 2025 7 / 26



Question
Seems like we now have two arrow types:

1 Normal: A → B
2 Dependent: (x : A) → B

Do we need both? Nope!

A → B ≡ (_ : A) → B

Hype for Types Dependent Types April 7, 2025 7 / 26



Some Rules

Γ, x : τ ` e : A Γ, x : τ ` A : Type
Γ ` λ(x : τ)e : (x : τ) → A

Γ ` e1 : (x : τ) → A Γ ` e2 : τ

Γ ` e1 e2 : [e2/x ]A

Hype for Types Dependent Types April 7, 2025 8 / 26



Note on Notation
In SML we write type contructors on the right:

val cool : int list = [1,2,3,4]

But now we have functions in our types, and we apply functions on the
left! So let’s just write everything on the left. While we are at it, lets
make values of type Type capital, and their values lowercase:

val cool : List Int = [1,2,3,4]
val a : A = (* omitted *)

Question
What is the type of List?

List : Type -> Type

List is a function over types!

Types are values1

1Readers may note the parallels to another CS course mantra.
Hype for Types Dependent Types April 7, 2025 9 / 26



Note on Notation
In SML we write type contructors on the right:

val cool : int list = [1,2,3,4]

But now we have functions in our types, and we apply functions on the
left! So let’s just write everything on the left. While we are at it, lets
make values of type Type capital, and their values lowercase:

val cool : List Int = [1,2,3,4]
val a : A = (* omitted *)

Question
What is the type of List?

List : Type -> Type

List is a function over types!

Types are values1

1Readers may note the parallels to another CS course mantra.
Hype for Types Dependent Types April 7, 2025 9 / 26



Note on Notation
In SML we write type contructors on the right:

val cool : int list = [1,2,3,4]

But now we have functions in our types, and we apply functions on the
left! So let’s just write everything on the left. While we are at it, lets
make values of type Type capital, and their values lowercase:

val cool : List Int = [1,2,3,4]
val a : A = (* omitted *)

Question
What is the type of List?

List : Type -> Type

List is a function over types!

Types are values1

1Readers may note the parallels to another CS course mantra.
Hype for Types Dependent Types April 7, 2025 9 / 26



Note on Notation
In SML we write type contructors on the right:

val cool : int list = [1,2,3,4]

But now we have functions in our types, and we apply functions on the
left! So let’s just write everything on the left. While we are at it, lets
make values of type Type capital, and their values lowercase:

val cool : List Int = [1,2,3,4]
val a : A = (* omitted *)

Question
What is the type of List?

List : Type -> Type

List is a function over types!

Types are values1

1Readers may note the parallels to another CS course mantra.
Hype for Types Dependent Types April 7, 2025 9 / 26



Vectors Again

If we can write functions from values to types, can we define new type
constructors which depend on values?

inductive Vec : Type → Nat → Type
| nil : (A : Type) → Vec A 0
| cons : (A : Type) → (n : Nat) →

A → Vec A n → Vec A (n+1)

def xs : Vec String 3 :=
cons String 2 "hype" (

cons String 1 (toString 4) (
cons String 0 "types" (nil String)

)
)

Hype for Types Dependent Types April 7, 2025 10 / 26



Vectors Again

If we can write functions from values to types, can we define new type
constructors which depend on values?
inductive Vec : Type → Nat → Type
| nil : (A : Type) → Vec A 0
| cons : (A : Type) → (n : Nat) →

A → Vec A n → Vec A (n+1)

def xs : Vec String 3 :=
cons String 2 "hype" (
cons String 1 (toString 4) (
cons String 0 "types" (nil String)

)
)

Hype for Types Dependent Types April 7, 2025 10 / 26



Vectors Again

inductive Vec : Type → Nat → Type
| nil : (A : Type) → Vec A 0
| cons : (A : Type) → (n : Nat) →

A → Vec A n → Vec A (n+1)

def two := 1 + 0 + 1

def xs : Vec String (6 / two) :=
cons String two "hype" (
cons String 1 (toString 4) (
cons String 0 "types" (nil String)

)
)

Hype for Types Dependent Types April 7, 2025 11 / 26



Vectors are actually usable now!
val append : (a : Type) -> (n m : Nat) ->

Vec a n ->
Vec a m ->
Vec a (n + m)

val repeat : (a : Type) -> (n : Nat) ->
a ->
Vec a n

val filter : (a : Type) -> (n : Nat) ->
(a -> bool) ->
Vec a n ->
Vec a ?? (* What should go here? *)

Ponder
How do we describe the return value of filter?

Hype for Types Dependent Types April 7, 2025 12 / 26



Vectors are actually usable now!
val append : (a : Type) -> (n m : Nat) ->

Vec a n ->
Vec a m ->
Vec a (n + m)

val repeat : (a : Type) -> (n : Nat) ->
a ->
Vec a n

val filter : (a : Type) -> (n : Nat) ->
(a -> bool) ->
Vec a n ->
Vec a ?? (* What should go here? *)

Ponder
How do we describe the return value of filter?

Hype for Types Dependent Types April 7, 2025 12 / 26



Existential Crisis

For filter, we need to return the vector’s length, in addition to the vector
itself:

val filter : (a : Type) -> (n : Nat) ->
(a -> bool) ->
Vec a n ->
Nat × Vec a ??

We want to refer to the left value of a tuple, in the TYPE on the right.

Intuition: existential quantification!

There exists some n : Nat, such that we return Vec a n.

(We’re constructivists, so exists means I actually give you the value)

Hype for Types Dependent Types April 7, 2025 13 / 26



Existential Crisis

For filter, we need to return the vector’s length, in addition to the vector
itself:

val filter : (a : Type) -> (n : Nat) ->
(a -> bool) ->
Vec a n ->
Nat × Vec a ??

We want to refer to the left value of a tuple, in the TYPE on the right.

Intuition: existential quantification!

There exists some n : Nat, such that we return Vec a n.

(We’re constructivists, so exists means I actually give you the value)

Hype for Types Dependent Types April 7, 2025 13 / 26



Duality

(x : τ)× A ≡ ∃x : τ.A

This type can also be written:
1 {x : τ | A}
2 Σx :τA

As before, A × B ≡ (_ : A)× B
val filter : (a : Type) -> (n : Nat) ->

(a -> bool) ->
Vec a n ->
(m : Nat) × Vec a m

Hype for Types Dependent Types April 7, 2025 14 / 26



More Rules

Γ ` e1 : τ Γ ` e2 : [e1/x ]A Γ, x : τ ` A : Type
Γ ` (e1, e2) : (x : τ)× A

Γ ` e : (x : τ)× A
Γ ` π1 e : τ

Γ ` e : (x : τ)× A
Γ ` π2 e : [π1 e/x ]A

Hype for Types Dependent Types April 7, 2025 15 / 26



Ok, so what?

Hype for Types Dependent Types April 7, 2025 16 / 26



Specifications are actually pretty nice

Discussion
Do you actually read function contracts/specifications in 122/150?

(* REQUIRES : input list is sorted *)
val search : int -> int list -> int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" *)
(* piazza post ensues *)

Hype for Types Dependent Types April 7, 2025 17 / 26



Specifications are actually pretty nice

Discussion
Do you actually read function contracts/specifications in 122/150?

(* REQUIRES : input list is sorted *)
val search : int -> int list -> int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" *)
(* piazza post ensues *)

Hype for Types Dependent Types April 7, 2025 17 / 26



Compile-time Contracts

The 122 solution:
int search (int target, int[] arr)
//@requires is_sorted(arr)
{

. . .
}

Nice, but only works at runtime.

What if passing search a non-sorted list was a type error?

Hype for Types Dependent Types April 7, 2025 18 / 26



Compile-time Contracts

The 122 solution:
int search (int target, int[] arr)
//@requires is_sorted(arr)
{

. . .
}

Nice, but only works at runtime.

What if passing search a non-sorted list was a type error?

Hype for Types Dependent Types April 7, 2025 18 / 26



A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat

Comment contracts aren’t good enough. I don’t read comments!

val div : Nat -> Nat -> Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat -> (n : Nat) × (1 ≤ n) -> Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types April 7, 2025 19 / 26



A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat

Comment contracts aren’t good enough. I don’t read comments!

val div : Nat -> Nat -> Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat -> (n : Nat) × (1 ≤ n) -> Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types April 7, 2025 19 / 26



A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat

Comment contracts aren’t good enough. I don’t read comments!

val div : Nat -> Nat -> Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat -> (n : Nat) × (1 ≤ n) -> Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.

What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types April 7, 2025 19 / 26



A simpler example

(* REQUIRES : second argument is greater than zero *)
val div : Nat -> Nat -> Nat

Comment contracts aren’t good enough. I don’t read comments!

val div : Nat -> Nat -> Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat -> (n : Nat) × (1 ≤ n) -> Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types April 7, 2025 19 / 26



15-151 Refresher

What constitutes a proof of n ≤ m?

We just have to define what (≤) means!
1 ∀n, 0 ≤ n
2 ∀m n, n ≤ m ⇒ n + 1 ≤ m + 1

This looks familiar!

inductive Le : Nat → Nat → Prop
| zero {n : Nat} : Le 0 n
| step {n m : Nat} : Le n m → Le (Nat.succ n) (Nat.succ m)

Hype for Types Dependent Types April 7, 2025 20 / 26



15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n, 0 ≤ n
2 ∀m n, n ≤ m ⇒ n + 1 ≤ m + 1

This looks familiar!

inductive Le : Nat → Nat → Prop
| zero {n : Nat} : Le 0 n
| step {n m : Nat} : Le n m → Le (Nat.succ n) (Nat.succ m)

Hype for Types Dependent Types April 7, 2025 20 / 26



15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n, 0 ≤ n
2 ∀m n, n ≤ m ⇒ n + 1 ≤ m + 1

This looks familiar!

inductive Le : Nat → Nat → Prop
| zero {n : Nat} : Le 0 n
| step {n m : Nat} : Le n m → Le (Nat.succ n) (Nat.succ m)

Hype for Types Dependent Types April 7, 2025 20 / 26



conceptsHW1.pdf

inductive Le : Nat → Nat → Prop
| zero {n : Nat} : Le 0 n
| step {n m : Nat} : Le n m → Le (Nat.succ n) (Nat.succ m)

def ex1 : Le 0 0 := @Le.zero 0
def ex1' : Le 0 0 := Le.zero

def ex2 : Le 0 3 := Le.zero

def ex3 : Le 2 3 := Le.step (Le.step Le.zero)

def ex4 : (n : Nat) ×' (Le 1 n) :=
�3, (Le.step Le.zero)�

Hype for Types Dependent Types April 7, 2025 21 / 26



Red-black Trees

A kind of balanced binary tree of the following invariants:
Every node is either red or black;
Every red node must have two black children;
Every leaf is black;
The number of black nodes from the root to every leaf is the same.

Hype for Types Dependent Types April 7, 2025 22 / 26



Red-black Trees

The best you can do in SML is:
datatype Color = Red | Black

datatype 'a Tree =
Empty

| Node of Color * 'a * 'a Tree * 'a Tree

But there is nothing that stop me from building a bad tree:
Node (Red, 1, Node (Red, 2, Leaf, Leaf), Empty)

Hype for Types Dependent Types April 7, 2025 23 / 26



Red-black Trees

The best you can do in SML is:
datatype Color = Red | Black

datatype 'a Tree =
Empty

| Node of Color * 'a * 'a Tree * 'a Tree

But there is nothing that stop me from building a bad tree:
Node (Red, 1, Node (Red, 2, Leaf, Leaf), Empty)

Hype for Types Dependent Types April 7, 2025 23 / 26



Dependent Type to Rescue: Red-black Trees

inductive Color
| black
| red

inductive RBT : Type → Color → Nat → Type
| leaf : (A : Type) → RBT A black 0
| red : (A : Type) → (n : Nat) →

RBT A black n → A → RBT A black n → RBT A red n
| black : (A : Type) → (n : Nat) → (y1 y2 : Color) →

RBT A y1 n → A → RBT A y2 n → RBT A black (n+1)

Hype for Types Dependent Types April 7, 2025 24 / 26



Some Sort of Contract

inductive Sorted : List Nat → Prop
| nil_sorted : Sorted []
| single_sorted : (n : Nat) → Sorted [n]
| cons_sorted : (n m : Nat) →

(xs : List Nat) →
Le n m →
Sorted (m :: xs) →
Sorted (n :: m :: xs)

def search : Nat
→ (xs : List Nat)
→ Sorted xs
→ Option Nat := sorry

Hype for Types Dependent Types April 7, 2025 25 / 26



A Type for Term Equality
If we can express a relation like ≤ and sortedness, how about equality?

inductive Eq (A : Type) : A → A → Prop
| refl (a : A) : Eq A a a

def symm (A : Type) (x y : A) : Eq A x y → Eq A y x
| Eq.refl x => Eq.refl

def trans (A : Type) (x y z : A)
(h1 : Eq A x y) (h2 : Eq A y z)
: Eq A x z :=

match h1 with
| Eq.refl x => h2

def plus_comm : (n m : Nat) → Eq Nat (n + m) (m + n) := sorry

def inf_primes : (n : nat) →
(m : Nat) ×' ((m > n) × (Prime m)) := sorry

Hype for Types Dependent Types April 7, 2025 26 / 26



A Type for Term Equality
If we can express a relation like ≤ and sortedness, how about equality?
inductive Eq (A : Type) : A → A → Prop
| refl (a : A) : Eq A a a

def symm (A : Type) (x y : A) : Eq A x y → Eq A y x
| Eq.refl x => Eq.refl

def trans (A : Type) (x y z : A)
(h1 : Eq A x y) (h2 : Eq A y z)
: Eq A x z :=

match h1 with
| Eq.refl x => h2

def plus_comm : (n m : Nat) → Eq Nat (n + m) (m + n) := sorry

def inf_primes : (n : nat) →
(m : Nat) ×' ((m > n) × (Prime m)) := sorry

Hype for Types Dependent Types April 7, 2025 26 / 26


	Safe Printing
	Ok, so what?

